Quantification of the loss-of-correlation due to PIV image noise

Sven Scharnowski1,*, Christian J. Kähler1
1: Institute of Fluid Mechanics and Aerodynamics, Bundeswehr University Munich, Germany
* Correspondent author: sven.scharnowski@unibw.de

Keywords: PIV uncertainty quantification, image characterization, signal-to-noise ratio

HIGHLIGHTS

\begin{itemize}
 \item The loss-of-correlation due to PIV image noise is estimated from the height of the auto-correlation function.
 \item A useful definition of the SNR of PIV images is the ratio of the standard deviations of the noise-free image and the image noise.
\end{itemize}

ABSTRACT

In this work, a new method is proposed to estimate the loss-of-correlation due to image noise F_σ from the auto-correlation function of PIV images. Furthermore, a new definition of the signal-to-noise ratio SNR for PIV images is suggested

$$SNR = \frac{I_0}{2\sigma_n} \sqrt{\frac{N_{ppp}}{\left(\frac{\pi}{4}D^2 - 1\right)}},$$

which results in a bijective relation between F_σ and SNR:

$$F_\sigma = \left(1 + SNR^{-2}\right)^{-1}.$$

Based on the newly defined SNR it becomes possible to estimate the signal level and the noise level itself by adding additional noise with known intensity to the images. The presented method is very general because the estimation of F_σ and SNR works independently of various parameters, including the particle image intensity, the particle image density and the particle image size. The findings lead to an extension of the fundamental PIV equation

$$I = N_{ppp} F F_F F_A$$

and enable PIV users to optimize their measurement setup with respect to the image noise and not only based on the loss-of-correlation due to in-plane motion, out-of-plane motion and displacement gradients. Furthermore, the new definition of SNR allows for a characterization and comparison of PIV images. Finally, the quantification of the uncertainty contribution due to image noise is possible.

Fig. 1 Loss-of-correlation due to image noise as a function of the SNR. Each symbol contains a variation of D and N_{ppp}.