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ABSTRACT 

This work presents YATS (Yet Another Tracking Software), an application of Feature Tracking (FT) and 
Computational Geometry techniques to the measure of fluid flows. From a general point of view, FT can be considered 
as a correlation based method, working on interrogation windows, for tracking features inside high, medium and low 
seeded images. FT defines its best correlation measure as the minimum of the Sum of Squared Differences (SSD) of 
intensity values of pixels between the interrogation windows in two consecutive frames. The implemented algorithm is 
able to extract interrogation window displacement and deformations from frame to frame adopting, in consecutive steps, 
two different models of motion for the window itself: a pure translational model, in which a rigid motion hypothesis is 
adopted, and an affine one, in which first order window deformation parameters are taken into account, allowing the 
interrogation spot to be translated, rotated, scaled and sheared. For small motions, a linearization of the image intensity 
leads to solve the SSD minimization problem in a Newton-Raphson style. Velocity computation is performed where the 
solution of FT linear system exists, i.e. where image intensity gradients are not null both in x and y directions (features). 
Velocity and velocity gradients are obtained, in a lagrangian fashion, along the trajectory of each feature. As a result, 
high-density-in-space lagrangian measurements are gained, in terms of fluid velocity and velocity spatial derivatives. 
Lagrangian information is then embedded into a Delaunay tessellation, which is uniquely defined by the spatial relative 
positions of the features tracked from time t to t+1: the Eulerian fields of velocity and velocity spatial derivatives are 
obtained by applying the Natural Neighbours (NN) interpolation algorithm on the Delaunay tessellation itself, for an 
arbitrary sized grid. In NN method the support for data interpolation is not defined by the same measure in all directions, 
but is allowed to be non isotropic: support size in r direction is not given by an L2 metric but is a consequence of the 
geometric construct that defines the region of interaction between the features.  

Results obtained for two kinds of synthetic images are shown: array of vortices and Std. set of the Visualization 
Society of Japan. The accuracy of the method is highlighted both in Lagrangian and Eulerian framework. 
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Fig. 1: Synthetic images of an array of vortexes with 15.5 pixel core. Lagrangian  velocity field (a) (vectors are out of 
scale for clarity) and Lagrangian vorticity field (b) after FT analysis. Vorticity is plotted on the support of a 
Delaunay tessellation that uses the feature positions in a) as reference nodes and fills each triangle with a 
demonstrative vorticity value obtained as linear interpolation of measured data at its vertexes. 
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INTRODUCTION 

Among optical methods for scientific and industrial non-invasive measure of the velocity inside a flow, Particle 
Image Velocimetry plays a major rule because of its ability to extract the whole eulerian velocity field on a regular grid. 
The experimental seeding condition of the flow defines two extreme limits inside the class of PIV techniques: the low-
particle-density mode (referred as Particle Tracking Velocimetry, PTV) and the high-particle-density mode (referred as 
Particle Image Velocimetry, PIV). Both methods inherently measure the Lagrangian velocity of particles (Adrian, 1991), 
but they strongly differ in algorithmic and results structure. 

Classical PTV low density image analysis methods (Lewis et al., 1987; Kobayashi et al, 1989 among others) look for 
centroid position of seeding particles in at least three consecutive frames, adopting centroid-matching strategies based on 
maximum displacement, maximum acceleration, preferential direction etc. Those PTV techniques are not applicable to 
calculating the velocity in flows subject to strong deformation, because they deal with fluid motion mainly due to 
translation: additional constrains are required to solve the fluid flow. Tracking methods that use two frames analysis have 
been developed too, based on the investigation of the highest match probability built on the accumulated number of 
matches obtained by iterative calculations (Baek and Lee, 1996), on the spring model method (Okamoto et al., 1995), on 
the tracking of triangle elements of a Delaunay tessellation (Song et al., 1999) and on the use of the velocity gradient 
tensor (Ishikawa et al., 2000). Among PTV algorithms that use a correlation function as a tracking criterion, here the 
work by Gui and Merzkirch (2000) is reminded. This method uses the Minimum Quadratic Difference (MQD) algorithm, 
a method that looks quite similar to the minimization of the Sum of Squared Difference (SSD). 

The basic idea of PIV high-density image analysis methods is the identification of similar particle patterns in two 
subsequent PIV images, via the application of a matching criterion. The classical PIV operates directly on intensity values 
of couples of subsequent images. The analysed area is subdivided in many interrogation windows, supported on a regular 
grid, with a certain degree of overlapping: velocity vectors of the eulerian field are obtained finding the displacement 
between the investigated region and its “most similar region” at next time. The matching measure is chosen as the inner 
product between the interrogation windows. The position of the centroid of the sharpest peak in cross-correlation 
function is a measure of the average displacement taken over the investigated region. The most important limits in 
conventional cross-correlation PIV algorithms can be summarized in two categories: limits in the accuracy, due to the 
assumption that velocity gradients inside the interrogation window are negligible and limits in velocity dynamic range, 
due to the conflict between the interrogation window size and the in-plane displacement that causes loss-of-pairs (Adrian 
1991). 

In order to avoid these problems, different approaches have been proposed in literature: Huang et al. (1993) and 
Jambunathan et al. (1995) first proposed image deformation based techniques (see Scarano, 2002 for a review). 
Advanced PIV methods introduced a local field correction function in order to allow interrogation window deformation 
(Nogeira et al., 1999) and the use of iterative multigrid analysis in order to reduce the size of the interrogation window 
(Scarano and Riethmuller, 2001 among the others). 

Other two non classical PIV methods are reminded here, because of their affinity with the technique proposed by the 
author: the Correlation Image Velocimetry (CIV), by Tokumaru and Dimotakis (1995), that minimizes a Lagrangian 
function of the scalar image intensity field, and the Direct Measurement of Vorticity (DMV), by Ruan et al. (2001), that 
performs the direct evaluation of the vorticity from the analysis of the image flow rotation. 

The YATS method here proposed relies on Feature Tracking (FT), a correlation based tracking procedure, and on the 
Natural Neighbours interpolation (NN), which is applied to obtain data on a regular grid. The FT, a well-known image 
alignment algorithm, can be considered as a Particle Image Velocimetry technique based on a distance measure 
minimization problem (Lukas and Kanade, 1981). This method defines the best matching measure between windows in 
two consecutive frames as the minimum of the Sum of Squared Differences (SSD) between intensity values of pixels in 
two interrogation windows at time t and t+1. The warp W that maps pixels from their position x(x, y) in the image at time 
t to their position in the image at time t+1 is chosen as a priori hypothesis about the model of motion of the flow inside 
the image. For small displacements, a linearization of the image intensity leads to a Newton-Raphson style minimization 
(Tomasi and Kanade, 1991, Shi and Tomasi, 1994). The problem is solved, using a pyramidal representation of the 
images (Burt and Adelson, 1983), in two consecutive steps: in the first step the window displacement is obtained using a 
pure translational warp as motion model; in the second step the use of an affine warp, that allows translation, rotation, 

scale and shear of the interrogation spot, permits the direct, lagrangian measure of the velocity gradients 
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refinement of the displacement estimation.  

The uniqueness of FT in PIV systems framework concerns the selection of the investigated spots: SSD minimization 
system is solved only in the neighbourhood of points, called “good features to track”, where preliminary analysis of 
texture patterns has confirmed the existence of a numerically well-defined solution (Tomasi and Kanade, 1991, Shi and 
Tomasi, 1994). In other words, this method supplies a quantitative measure of the trackability of a feature inside the 
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image: this measure relies on the solvability condition of the tracking algorithm and guarantees the existence and the 
precision of the result. 

In order to extract eulerian velocity fields from FT results and with the general aim of retaining and maximizing the 
information content of unstructured lagrangian data, a Delaunay triangulation (Voronoi 1908, Delaunay 1934) is built 
using tracked features positions as reference nodes and assigning to each node the corresponding measured quantities 
(velocities and their spatial derivatives). Natural Neighbour (NN) approach (Watson 1981, Sambridge et al. 1995) is then 
applied to interpolate sparse data on a regular grid.  

The NN interpolation is a local procedure that completely differs from the classical surface approximation schemes, 
in which weight function is usually isotropic (circular in 2-D), non-negative within a circle of some fixed radius, and 
monotonically decreasing with distance from some point x. All those approaches impose that nodes that are closer to x 
give a larger weight at x than those placed at greatest distance. NN method is based on the idea that the NN coordinate of 
a point x is not defined by the same measure in all directions, but it is a consequence of the geometric construct that 
defines the region of interaction between the features. Grids with different cell size that share a set of nodes will show the 
same data in the shared nodes.  

Two types of images are analysed: the first type underlies analytical velocity fields (Nogeira et al., 2002); the second 
type is the Visualization Society of Japan Std. set of images (Okamoto et al, 2000). The former type permits the direct 
comparison of lagrangian results of FT tracking and the estimation of the error introduced by the gridding technique; the 
latter type offers a representation of FT performances in various conditions of flow seeding, particle dimension and 
particle displacement, in an eulerian framework. 

The paper is organized as follows: in Chapter 1 a background of the FT algorithm is reported. The Chapter 2 reports 
a description of the NN interpolation and in Chapter 3 results for synthetic data are shown. 

1 BACKGROUND OF FEATURE TRACKING 

Let’s consider a sequence of images recording the motion of a particle in a 3D fluid flow. If I(x, y) is the matrix 
containing the intensity values inside the image, and u = [u(x, y) v(x, y)] the 2D motion field projection on the CCD 
image plane, the equation governing I variations can be written as: 
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under the condition of small displacements between images at different times.  

Eq. 1-1 represents the substantial derivative of luminosity inside the image: if we consider all surfaces inside the 
image to have Lambertian characters (their luminosity values do not depend on the point of view of the observer) and the 
illumination source to give almost constant level of light, the right member of Eq. 1-1 can be considered as zero; in this 
way the continuity equation for the optical flow, also called Brightness Constancy Constrain (BBC), is obtained: 
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The basis of the measurement principle is the comparison of two images obtained in a finite time interval, then the 
intermediate transport process along the path line of the particle has not to be considered. Eq. 1-1 represents the 
lagrangian derivative of luminance function, taking in account all non-linear effects in luminosity changes: it can be used 
as a cost function evaluating the change in image luminosity levels due to external factors. Naming C the path of the 
particle from the first to the second image, a cost function ε can be expressed as: 
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Eq. 1-3 

When the terminal points of path line are expressed as A and B and I and J are the images at time t and t+1, the cost 
function can be obtained simply using the luminance values IA, JB as follows: 

[ ] 2
AB IJ −=ε  Eq. 1-4 
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Eq. 1-4 is computed in a single point; it only provides one equation for the motion unknowns. Eq. 1-4 is able to 
provide enough constrains on u only when the same equation is evaluated at each point in a region R(x) surrounding a 
particle: the cost function takes the name of SSD and the over determined linear system is solved via a Newton-Raphson 
style minimization algorithm. 

1.1 Interrogation window warping 

Naming warp W(x, p) the operator that maps pixels x from frame I at time t to frame J at time t+1, the goal of the FT 
algorithm is to minimize the SSD: 

[ ] [ ]∑ ∑ −=−+=
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This system is solved via a minimization procedure: if we suppose that initial value p0 of p is known, the problem 
starts from p0 and is iteratively solved for increments of the parameters ∆p; the following equation is (approximatively) 
minimized: 

min
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in respect to ∆p, and then updated with p ?  p + ∆p (Baker and Matthews, 2004). Those two steps are repeated until 
the norm || ∆p|| 2 is lower than a prefixed threshold. 

1.2 FT algorithm 

The non-linear Eq. 1-5 can be linearized by means of first order Taylor expansion of J(W(x, p+ ∆p)): 
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The parameters number n can be arbitrarily large and the warp W can be arbitrarily complex (Baker and Matthews, 
2004): nevertheless, numerical instabilities rising are strictly related with the parameters number n. 

The minimization problem in Eq. 1-6 is a least-square problem and admits a closed form solution: deriving Eq. 1-6 
in respect to ∆p yields to: 

( ) 0)(),( =











−∆

∂
∂

∇+












∂
∂

∇∑
R

T

xIp
p

W
IpxWJ

p
W

I , 

from which the linear system for parameters increment is obtained: 
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Eq. 1-7 is iteratively solved until threshp <∆
2

 or the number of iterations exceeded a maximum value: in the 

former case, the feature is validated; in the latter case the feature is rejected. 

1.2.1 The pure translational motion model 

Now suppose that the interrogation window moves with rigid motiom: placing x0 = 0, the warp W is: 
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matrix G of Eq. 1-7 is: 
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and the so-called step descendent parameters update vector b is: 
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Eq. 1-9 

A CPU of 3.0 Mhz needs about 0.600 seconds in order to track about 8000 features. 

1.2.2 The affine motion model 

When the window affine deformation is admitted, the warp W is: 
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coefficients in Eq. 1-7 are: 
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A CPU of 3.0 Mhz needs about 0.9 seconds in order to track about 8000 features with double step. 

1.3 Good features to track 

The solvability of the system in Eq. 1-7 is strictly related with the invertibility of the matrix G. Let’s consider Eq. 
1-8: G matrix will be invertible and well conditioned if its eigenvalues are both not null: for a symmetric matrix of real 
numbers, eigenvalues are both real and positive. If the solution of the Eq. 1-7 is searched in points where image gradients 
are both not null (and sufficiently strong), both eigenvalues of G matrix will be great enough to guarantee G inversion 
stability. In practice, eigenvalue control is based on a minimum threshold value that takes into account the noise inside 
the image. As a consequence, the choice of a threshold value for the minimum eigenvalue is a critical step in feature 
description. Moreover, the presence of noise requires both eigenvalues to be great, while the good conditioning of the 
matrix requires that the two eigenvalues do not differ too much. Those conditions can be simply matched observing the 
minimum eigenvalue of correlation matrix of intensity gradients in small windows (3x3) all over the image: if this 
eigenvalue is greater than the noise level, the matrix G is well conditioned. Points that are consistent with those 
conditions are called “good features to track”: they are detected inside the first frame and tracked by the FT algorithm. 
Features for whom the FT doesn’t find a solution are replaced by a new good features research. Feature position is 
detected, in a first stage, at integer position: a local maximum of the second eigenvalue is then searched, at sub-pixel 
location, in a small neighbour of the initial integer feature position. 
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Note that the concept of good features to track has been introduced as a requirement of the tracking algorithm: “a 
feature is good if it can be tracked well” (Tomasi and Kanade, 1991). The uniqueness of FT concerns the suggestion of a 
quantitative measure of the quality of the tracking results, the G-1 matrix, providing that it is evaluated in points (the 
good features set) where the solution of tracking exists and is well conditioned. 

1.4 The pyramidal double-step procedure 

In YATS implementation of FT, the described algorithms are embedded in a pyramidal representation of frames at 
time t and t+1. A pyramidal representation with L levels of an image is built placing the original image at level 0; all 
other levels are obtained convolving the image at level l-1 with a 5x5 gaussian window, then selecting odd rows and 
columns and placing the result at level l. In this way the ratio between interrogation window and image size at level l is 
improved of 2l (l=0..L). The Lukas-Kanade process that starts at level L (usually not greater than 3) works with small 
particle displacements, as required from theory, and the in- plane loss of pair problem is greatly reduced. Results of 
tracking are propagated, as initial seeds, at level L-1 and so on, until level 0 is reached. Pyramidal approach doesn’t differ 
from multigrid PIV approach. It’s advantages are the noise reduction in images at level l>0 (due to the convolution with 
a gaussian window) and a constant complexity of the code: the interrogation window has always the same dimension at 
each level l of the pyramid. 

Operatively, YATS method performs the tracking following two steps: after detection of good features to track at 
level 0 and their propagation at the higher pyramid level, each feature is tracked using the translational motion model; if 
the feature has been tracked at level l, it is then propagated at level l-1, until level 0 is reached. After this step, the same 
feature is tracked by means of the affine motion model that takes, as seeding initial condition, the displacement found 
after translational tracking. In this way, the numerical instabilities that rises when evaluating displacement derivatives in 
affine motion model are negletted from the use of good initial seeds obtained from the pure translational motion model. 

 
Fig. 2: interrogation window before 
and after gaussian convolution and 
photometric normalization  
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Fig. 4: a zoom of the vortex core 
in Fig. 3. 
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Fig. 3: displacement and deformation of tracked interrogation spots over an 
experimental sequence of 6 frames. The first window of the sequence (blue 
dashed line) is warped iteratively to show time evolution of window 
deformation (last window in red). Displacement in green. Spot size has been 
reduced from 11 px to 4 px.  

In applying the described procedure, interrogation windows intensity values are convolved with a gaussian window 
of the same size, with m⋅= 5.0σ , where m is the half side of the interrogation window. Moreover, photometric 
normalization on DN vector I of image intensity values is adopted (i.e. the original values are transformed in a zero mean 
and unitary standard deviation set, see Fig. 2) and robust outliers detection is performed (Tommasini et al., 1998), in 
order to monitor the quality of the tracked features.  

The monitoring is founded on the observation of the residuals when comparing good features surrounding (almost 
identical) windows from a frame to the next one. If we assume that the intensity of each pixel in the current frame 
window is the same of that in the previous frame, plus a gaussian additive noise, the square of a gaussian random 
variable has a chi-square distribution. The sum of n chi square random variables with one degree of freedom is 
distributed as a chi-square with n degrees of freedom. Therefore, the residual computed over a NxN window is 
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distributed as a chi-square with N2 degrees of freedom. As the number of degree of freedom increases, the chi-square 
distribution approaches a gaussian (distributions with more than 30 degrees of freedom); therefore, since the 
interrogation window dimension, for each feature, is at least 7x7 pixels, it is possible to safely assume a gaussian 
distribution for the residuals of a good feature. When a tracked feature is a bad feature, its residual is not a sample from a 
gaussian: it is an outlier. From this point of view, bad feature detection can be approached using a simple but effective 
model-free rejection rule, X84, which achieves robustness by employing median and median deviation instead of the 
usual mean and standard deviation. This rule prescribes to reject values that are more than k times the Median Absolute 
Deviations (MADs) away from the median:  







 −= j

j
i

i
medmedMAD εε  Eq. 1-12 

where εi,j are the residuals in points i and j of the interrogation spot. In practice, a value of k=5.2 has been used. 

An example of the final result of the tracking procedure is sketched in Fig. 3 and Fig. 4, in which displacement and 
deformation are shown for a set of interrogation windows during a 6 frames sequence of real images. The deformation is 
iteratively applied, in order to show the continuity of the tracking during the sequence analysis. 

2 NATURAL NEIGHBOURS INTERPOLATION 

In order to maximize the spatially unstructured velocity data information contain, Voronoi tessellation and its dual, 
Delaunay triangulation (Voronoi 1908, Delaunay 1934), have been chosen as tools for obtaining regular pictures of the 
flow. 

In the following sections, the term node is referred to a feature, while the term point is referred to an element of the 
2-D plane. Consider a set of N distinct nodes N={n1…nm}: the Voronoi diagram (first order diagram) of the set N is a 
subdivision of the plane into regions TI (closed and convex, or unbounded) associated with a node nI, such that any point 
in TI is closer to nI than to any other node NnJ ∈ . For all the nodes inside the convex hull, Voronoi polygons are closed 

and convex, while the polygons associated with nodes on the boundary of the convex hull are unbounded. 

The Delaunay triangulation is constructed by connecting the nodes where Voronoi cells have common boundaries. 
The duality between the two geometric structures implies that there is a Delaunay edge between two nodes in the plane if 
and only if their Voronoi cells share a common edge. The Delaunay triangulation is completely defined if the Voronoi 
decomposition is known, and vice-versa. 

Delaunay triangles are of interest because of their useful properties. They represent the “best looking” set of 
triangles, in the sense that the minimum internal angle of each triangle is maximized (Lawson, 1977). Another important 
property of the triangulation is the “empty circumcircle” criterion (Lawson, 1977): if DT (ni, nj, nk) is any Delaunay 
triangle of the data set N, then the circumcircle of DT contains no other nodes of N. An example of Delaunay tessellation 
is shown in Fig. 1 b).  

2.1 Natural neighbours interpolation method 

The NNs of a node Nn ∈ are those nodes in the neighbouring Voronoi cells or, equivalently, those to which the 
node is connected by the sides of Delaunay triangle. NNs concept can be extended to any point P(x, y) of the plane: in this 
case they can be identified as those points to which P(x, y) would be connected if it was added to the Delaunay 
triangulation. In other words, NN of P(x, y) are the points whose triangulation relationships were modified by the new 
point insertion. An operative consequence of this consideration is that a node Nn ∈  is a NN for the point P(x, y) if the 
circumcircle of one or more triangles having n as vertex contains the point P(x, y).  
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Fig. 5: circumtriangles of grid point GP. 
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Fig. 6: II° order Voronoi polygon 
for the point GP of Fig. 5. 
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In Fig. 5, the grid point GP is inserted inside a Delaunay triangulation whose reference nodes are the features tracked 
between time t and t+1. In this picture, Delaunay triangulation has been drawn using continuous lines and its dual, the 
Voronoi tessellation, using dashed lines. Three circumtriangles are detected (grey area) and a set of five NNs is identified 
(black circles numbered from 1 to 5 in Fig. 5 and Fig. 6).  

NNs are an ideal basis for a local interpolation scheme as: 
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),(, φ  Eq. 2-1 

where f(x, y) is the interpolated function in (x, y), fi are the values of the observable at the node nI and ),( yxiφ  are 
the weights associated to each node; those weights are called the NN-coordinates of the point P(x, y). The sum is 
extended from 1 to M, where M is the number of NNs of point P(x, y).  

In order to quantify the neighbour relations of any point P(x, y) of the plane into the tessellation, Sibson (1980) used 
the concept of second order Voronoi cells, introducing the NN and the NN-coordinates. The second order Voronoi 
diagram of the set of nodes M is a subdivision of the plane into cells TIJ, where each region TIJ is associated with a nodal 
neighbours pair (nI, nJ), such that TIJ is the locus of all points that have nI as nearest neighbour, and nJ as second nearest 
neighbour. The area of this second order polygon can be subdivided in many parts, as in Fig. 6. The NN coordinate of 
P(x, y) in respect to one of its Natural Neighbour is defined as the ratio of the area of their overlapping Voronoi cells to 
the total area of the second order Voronoi cell about x: 
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Eq. 2-2 

A complete description of the NN algorithm can be found in Sambridge et al. (1995). 

A CPU of 3.0 Mhz needs about 0.8 seconds in order to resample about 8000 features on a 32x32 grid and about 8.5 
seconds to resample the same set on a grid 256x256. 

3 RESULTS  

3.1 Performance measure 

YATS procedure quantitative performance estimation will be exposed in terms of the relative Root Mean Square 
(RMS), i.e. the ratio between the RMS of the difference between the recovered and correct flow field and the RMS of the 
correct flow field: it will be computed both on sparse data of tracking (where true value is available) and on eulerian 
data. Relative RMS will be reported for vorticity fields too. 

In order to clarify the performances of FT and NN, neither validation procedures nor borders specific treatments has 
been applied on velocity vectors; the only validation routine is the robust outliers detection described in 1.4 (Tomassini 
et al., 1998). Eulerian resampling has been performed on grids of 1x1 pixels for the array of vortices case; results onVSJ 
data will be shown on a 2x2 cell size grids. 

3.2 Array of vortices 

In order to estimate the relative influence of the FT and of the NN interpolation, synthetic images with analytical 
velocity field have been used. The presence of an analytical solution for the velocity field permits the direct estimation of 
the tracking performances. In these images (see contribution paragraph) the displacement field s (in pixel units) 
corresponds to the following equations: 
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One type of images has been used, with four wavelengths, corresponding to 128, 64.2, 31 and 21.3 pixels (64, 32.1, 
15.5 and 10.65 as core vortex). The maximum displacement is A=6 px for the 64 px core vortex type and A=2 px in all 
the other cases. The mean distance between particles is small, d=2 px, i.e. 4/(pd2) ~ 0.3 particles per pixel area (ppa). 
Particle dimension has a uniform value of 2 px. This type of image is comparable with those obtained seeding air with 
micrometer size oil droplets in large wind tunnel facilities (Nogueira et al., 2002). Sequences of six consecutive images 
have been analysed, in order to emphasize some performance improvements in resampling when the analysis is extended 
to a sequence of frames. 



9 

3.2.1 Measure of velocity and vorticity 

The FT algorithm starts its chain of analysis detecting the features that are good to track: this means that image pixels 
are investigated in order to evaluate the minimum eigenvalue of intensity gradients correlation matrix. 

The image is visited in each pixel and, if a minimum threshold condition is verified, a local maxima algorithm looks 
for better feature position at sub-pixel precision. After this phase, a minimum distance condition is applied to the good 
features set: higher minimum eigenvalue features are chosen. At this time, the starting features position is heavily 
conditioned from the integer position of the pixels inside the image and from the minimum distance condition. This 
situation is typical when we analyse couples of images, like in PIV classical cross-correlation camera images. In the 
analysis of sequences of frames, the features tracked from time t to time t+1 are all included in the new set of good 
features for the tracking from t+1 to t+2: a new search of other good features starts and, in respect of the minimum 
distance condition, other features are added in places where tracked features density is small. Fig. 7shows the number of 
tracked features for four six-frames sequence. 

 
Fig. 7: evolution of the feature number 
during tracking. 

 
Fig. 8: relative rms vs time of the 
velocity field after tracking 

 
Fig. 9: relative rms vs time after 
resampling 

During the track, the quality of the tracking remains almost the same for each couple of frames, but the number of 
tracked features greatly improves: in this way, a greater number of reference points are furnished to the resampling 
algorithm, and a certain improvement of the resulting eulerian velocity field is recorded. This result is shown in Fig. 8 
and Fig. 9: relative rms of lagrangian data shows almost constant values, while relative rms of eulerian data decreases as 
the number of tracked features improve. 

The same result has been obtained for the vorticity data: Fig. 10 shows the evolution of relative rms value for the 
sparse vorticity field obtained after tracking, Fig. 11 shows the relative rms of vorticity data after resampling on a regular 
grid. A direct comparison of performance evolution after resampling at time t=1 and at time t=5 is reported in Fig. 12 
both for velocity (V) and vorticity (W).  

 

Fig. 10: relative rms vs time of the 
vorticity field after tracking 

 

Fig. 11: relative rms vs time of 
vorticity field after resampling 

 

Fig. 12: comparison of the 
relative rms after resampling 
at time t=1 and t=5 

A visual sketch of the general consistency of the measured quantities is drawn in pictures from Fig. 13 to Fig. 18, in 
which true data are plotted using dots and measured data with a continuous line: horizontal velocity and vorticity along a 
column are shown in the most challenging situation (maximum value for true data) on a 1x1 cells Eulerian grid. Results 
obtained for vortexes with 64 px core are omitted because true and measured profiles are quite overlapped; smaller 
vortexes are measured with an underestimation of the peak values that increases as vortex core size decreases. 
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Fig. 13: Vertical profile of horiz. 
velocity. Core: 32.1 px. Spot 11 px 
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Fig. 14: Vertical profile of horiz. 
velocity. Core: 15.5 px. Spot 11 px 
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Fig. 15: Vertical profile of horiz. 
velocity. Core: 10.65 px. Spot: 9 px 
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Fig. 16: Vertical profile of vorticity. 
Core: 32.1 px. Int. spot: 11 px 
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Fig. 17: Vertical profile of vorticity. 
Core 15.5 px. Int. spot: 11 px 
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Fig. 18: Vertical profile of vorticity. 
Core: 10.65 px. Int. spot: 9 px 

3.3 VSJ std. set of data 

Each standard image set from Std01 to Std08 of VSJ (Okamoto et al., 2000) consists on four consecutive images 
obtained using a constant 2D flow field. Std01 is a typical case of shear wall flow; Std02 to Std08 explore some 
variations of the operating conditions around it. Only one vector field has to be recovered for each test set: here, eulerian 
fields obtained after resampling of tracking results from third to fourth image will be shown.  

A sketch of the general agreement between exact data and obtained results is shown in Fig. 19, in which horizontal 
and vertical velocity components are shown for two columns of the velocity field, respectively near the left border and 
the right border. Results are given on a 2x2 cell grid (blue), while exact data are given on a 8x8 resolution (red). 
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b) 
Fig. 19: comparison between vertical profiles of horizontal and vertical components of exact data (red, resolution 8x8) 
and obtained results (blue, resolution 2x2) near left and right borsers. Reference case (Std. 01). 

PIV data from LIMSI-CLIPS ODP-PIV system applied at VSJ images sets will be used as comparative terms (as 
reported in Quenot and Okamoto, 2000). All results are reported as the ratio between rms of error and rms of data. 

Due to the described analysis chain, borders treatment has a great influence on results: grid points that falls outside 
the Delaunay network cannot be analysed using NN interpolation, so a completely different scheme should be applied. 
Instead of introducing a correction for the treatment of the border nodes, results are shown for both the original grid and 
a 28x28 one, nested inside the original one. However, comparison results have been evaluated on the full grid size 
(32x32 nodes). In case of lack of data for some eulerian nodes, density of evaluated nodes is reported in brackets. 
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STD 01-Ref 02–Large 
disp. 

03–Small 
disp 

04-Dense 05-Sparse 06–
Const.Diam 

07–Large 
diam. 

08–Large 
OOF 

32x32 0.044 (91%) 0.117 (83%) 0.034 (95%) 0.028 (91%) 0.047 (88%) 0.032 (92%) 0.034 (92%) 0.051 (86%) 

28x28 0.028 0.11 (95%) 0.020 0.015 0.039 0.019 0.021 0.042 (98.9%) 

Comp. 0.042 0.146 0.102 0.030 0.045 0.043 0.049 0.063 

Table 1: Relative RMS (rms(e)/rms(s)) error on the VSJ standard sequences 01 to 08. Vector density is reported 
between brackets only if not equal to 100%.  

Obtained results are all in good agreement each other (at least on the 28x28 grid). Few exceptions can be 
emphasized: the large displacement case (Std. 02), the large out-of-field case (Std. 08) and the sparse one (Std. 05). All 
other variations of operative conditions seem not to introduce relevant discrepancies from the reference case. Moreover, 
sparse particles case results (Std. 05) show the capability of the system to extract good quality eulerian fields starting 
from a small and sparse set of lagrangian reference points, underlying the efficiency of the NN interpolation scheme. 

4 DISCUSSION 

The proposed chain of analysis represents an effective extension (towards a connection point) of classical high and 
low particle density PIV and PTV systems, from eulerian and lagrangian point of view. The correlation-based tracking 
scheme is able to solve the analytic displacement problem both in high and low particle density images (the solution 
exists also for the one-moving-particle case); the existence and the stability of the solution are guaranteed in 
correspondence of the “good features to track” set. Large displacements are extracted using a pyramidal representation of 
the images: this allows the use of small windows without any loss-in-plane consequence. The combined use of a pure 
translational model of motion and of an affine one, that allows translation, rotation, scaling and shear of interrogation 
spots, permits the direct measure of the spatial velocity gradients. The optimised procedures adopted in developing code 
(OpenCV, 2003) keep execution time of both FT and NN routines very small. In this paper, neither vector validation nor 
border quality improvement has been applied: those points will be analysed in future works. 
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