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ABSTRACT 

A simple technique is described for measuring the mean rate-of-displacement (velocity gradient)  tensor  in a plane by 
using a conventional  stereoscopic PIV system. The technique involves taking PIV data in two or three closely-spaced  
parallel planes at different times. All components of the mean rate–of–displacement tensor are then calculated by using 
finite difference formulas. Planar measurements of the mean vorticity vector, rate-of-rotation  and rate-of-strain 
tensors  and the production of  turbulent kinetic energy can be accomplished. Parameters of the Q–criterion and 
negative–λ2 techniques used  for  vortex  identification  can be  evaluated  in  the mean flow field. Dissipation rate of  
the turbulent kinetic energy in a  non-isotropic three-dimensional  flow field  may also  be estimated. Experimental data 
obtained for a round turbulent jet normal to a crossflow in a low-speed wind tunnel are presented to show the 
applicability of the proposed technique.  The PIV cameras and  light sheet optics shown in Fig. 1a are mounted on the 
same traverse mechanism in order to displace the measurement plane accurately.  Data obtained in constant–y and –z
planes are presented.  Fig. 1b shows  a contour plot of   the normalized  production rate of turbulent kinetic energy 
P*=PD/U3 in the z/D=2 plane (D is the jet diameter, U is the crossflow velocity).  P* is evaluated by using its exact 
definition, i.e., all  nine additive terms in the definition are included.  Smoothness of the contour plot  indicates  the 
successful implementation of  the technique.   Measurement uncertainties are discussed and algebraic relations for 
uncertainties in  P and the parameter of the Q–criterion are presented.  Consistency of the measurements is verified by 
showing agreement of   two  data sets obtained in two perpendicular planes. Accuracy of the data can be improved   if 
optimal spacing between velocity vectors is employed.  The feasibility of measuring the truncation  error in  the 
rotation–  and strain–rate tensors  is  also demonstrated. 

Fig. 1  a)  Schematic  description   of   experimental set–up,  b) Contour plot of   the normalized production rate  of  
turbulent   kinetic  energy  P*=PD/U3 in  the  z/D=2 plane , Uncertainty in  P* is  0.25 (Red  dashed   line   
and  diamond symbol indicate  the  jet  exit  and  the location  of  the jet  trajectory, respectively). 
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1. INTRODUCTION 

The rate-of-displacement tensor is an important quantity in the analysis of problems in Fluid Mechanics. A knowledge 
of the decomposition into rotation- and strain-rate tensors is necessary for modeling turbulence, validating constitutive 
relations, identifying vortices and understanding the physical structure of a flow. However, measurement of the rate-of-
displacement tensor is a challenging task which requires acquisition of all three components of the velocity vector at  a 
number of points that are slightly displaced along three mutually perpendicular directions. Wallace and Foss (1995) 
describe the difficulties in measuring the rate-of-rotation tensor in turbulent flows.  The hot-wire anemometry and the 
Laser Doppler Anemometry (LDA) are in principle capable of measuring  the rate-of-displacement tensor at a point. 
Andreopoulos and Honkan (1996) and  Zhou et al.(2003) describe hot-wire probes (consisting of 9 and 8 wires, 
respectively) capable of measuring the instantaneous rate-of-displacement tensor. However, long data acquisition times 
may render the point–based measurement techniques impractical. The holographic PIV (Particle Image Velocimetry) 
technique (Meng and Hussain, 1993, Tao, 2000), which measures all three components of the velocity vector in a 
volume, readily produces the rate-of-displacement tensor. However, holographic PIV is a relatively new technique 
based on photographic recording, which requires long data processing times and large computer memory  that  severely 
limit  the number of  realizations used in data averaging.  The scalar imaging velocimetry (Dahm et al., 1992) and the 
three-dimensional particle tracking velocimetry (Nishino et al., 1989) also produce all components of the instantaneous 
rate-of-displacement tensor in a volume. The latter  technique  generally  provides  poor  spatial  resolution wheras the 
former  is applicable to high Schmidt number flows.  The dual plane PIV (Hu et al., 2001,  Mullin and Dahm, 2003) is 
probably the best  technique available today for measuring the instantaneous rate-of-displacement tensor.  However,  
the dual plane PIV  has a high cost and additional alignment requirements since it is  basically  equivalent to two 
stereoscopic PIV systems used  in  tandem. 
 
The present paper describes a simple technique for measuring the mean rate–of–displacement tensor in a plane by using 
a conventional stereoscopic PIV system  that records  all three components of the instantaneous velocity vector. The 
technique involves taking PIV data in two or three closely-spaced parallel planes at different times and is applicable to 
a broad range of flows (compressible, incompressible, steady, unsteady, laminar, turbulent). All components of the mean 
rate-of-displacement tensor are calculated by using finite differences. Planar measurements of the mean vorticity 
vector, rotation- and strain-rate tensors and the production of turbulent kinetic energy can be readily accomplished. 
Dissipation rate of the turbulent kinetic energy can also be estimated if the interrogation area size is sufficiently small  in  
a general,  non–isotropic  three–dimensional flow.  In general, the method requires large samples and good spatial 
resolution.  Experimental data obtained  for a jet in crossflow  are presented to show the applicability of the proposed 
technique. The test flow, which is highly turbulent, vortical and three-dimensional,  involves flow reversals in all three 
directions and can be best studied by a directionally sensitive non-intrusive technique.  Data averaged over a thousand 
vector maps along the intersection of two  perpendicular planes are compared with each other to assess the consistency 
of the technique.  Some earlier results on the successful implementation of the technique  was presented  in  Meyer et al. 
(2001) which reported that the deviator of  the rate–of–displacement tensor is not aligned with the deviatoric Reynolds 
stress  (i.e., the gradient–transport approximation is not valid) for  a  jet in crossflow. 
 

2. RATE−−−−OF−−−−DISPLACEMENT  TENSOR  

The mean rate-of-displacement tensor  dij is defined by  
 

dij = ∂ui / ∂xj (1) 
 
where ui are the mean velocity components and xj are the space variables in a Cartesian coordinate system, i and j
(=1,2,3) being free indices. dij can be decomposed into the summation of  the symmetrical rate-of-strain (deformation) 
tensor sij and  the skew-symmetrical  rate-of-rotation (spin) tensor  rij which are given by  (Tennekes and  Lumley, 
1972) 
 

sij = ( ∂ ui / ∂ xj + ∂ uj / ∂ xi ) / 2 (2) 
 

rij = ( ∂ ui / ∂ xj - ∂ uj / ∂ xi ) / 2 (3) 
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The mean vorticity vector  ζi , which is twice the angular velocity  vector,  is  related to the rate-of-rotation tensor by 
 

ζi=eijm rmj (4) 
 
where eijm  is the permutation symbol. A repeated index implies  summation unless indicated otherwise. The strain-rate 
tensor sij can be written as the summation of deviatoric and isotropic tensors which are measures of the rate-of-
distortion and the rate-of-dilatation (volumetric expansion), respectively. The rates of production and viscous 
dissipation of turbulent kinetic energy (P and ε), which are important parameters in most models of turbulence, are 
related to the mean and fluctuating rate-of-strain tensors sij and s'ij , respectively by  (Tennekes and Lumley, 1972) 
 

P=- <u'i u'j> sij     (5) 
 

ε = 2ν <s'ij s'ij > (6) 
 
where  brackets   < >   denote   averaging,  ν is  the  kinematic   viscosity,   u'i is  the  fluctuating  velocity vector and  
<u'i u'j> is the Reynolds stress tensor (divided by density).  The fluctuating deformation rate tensor   s'ij is defined by 
an equation similar to Eq. (2) where ui is  replaced by   u'i. The Q-criterion technique  used in  vortex identification 
evaluates  the  following scalar  (Hunt et al., 1988) 
 

Q = ( rij  rij -sij sij ) / 2 (7) 
 
which is  the second  invariant of  the mean rate-of-displacement tensor.  Jeong and  Hussain (1995) report  that the 
second largest  eigenvalue of   (sik skj + rik rkj ) , which is named  λ2, is generally  a better parameter than Q in 
identifying a vortex.  High positive values of   Q and  negative values of  λ2 identify  vortical  flow regions where the  
rotation rate dominates  the strain rate in the  mean flow field. 

3.  EXPERIMENTAL METHOD AND SET−−−−UP 
 
The proposed technique  involves acquisition of sterescopic PIV data in two or three closely-spaced parallel planes at  
different times. A conventional  stereoscopic PIV system measures all three components of the instantaneous  velocity 
vector in a plane. Averaging of PIV vector maps produces all three components of the mean velocity and  six 
components of the Reynolds stress tensor. In-plane-gradients of all velocity components can be calculated by using the 
central difference scheme which is accurate to second order. The gradients of all mean velocity components in the out-
of-plane direction can be evaluated  by using the forward difference scheme which is accurate to first order when PIV 
data is obtained in only two closely-spaced  parallel planes. Accuracy of the velocity gradients in the out-of-plane 
direction can be improved by taking data in three closely-spaced  parallel planes and employing the central difference 
scheme.  Once dij is known, sij , rij , ζi , P and Q can be calculated from Eqns. (2), (3), (4), (5) and (7), respectively. 
Components of the fluctuating rate-of-deformation  tensor involving in-plane-gradients of three fluctuating velocity 
components can be calculated in a similar manner. However, since data in parallel planes are not obtained 
simultaneously, the three out-of-plane derivatives of the fluctuating velocity components cannot be measured. Yet, one 
of these can be derived from a knowledge of  two in-plane-gradients of the fluctuating velocity field which is 
divergence free for incompressible flow.  By neglecting the remaining two out-of-plane gradients in Eq. (6), one can 
obtain an estimate of the turbulent dissipation rate for a general (non-isotropic)  three-dimensional flow. (The estimate 
could potentially be improved by simply using  9/7 times the 7 recorded contributions on account of the approach to 
isotropy of small scales.) An accurate measurement of the dissipation rate of the turbulent kinetic energy requires a 
rather small interrogation area size  and small separation distance between the parallel laser planes (both smaller than a 
few Kolmogorov viscous length scales) as will be discussed later.  
 
The rate-of-displacement tensor was measured in the flow field of a turbulent non-buoyant jet in crossflow  in a low 
speed wind tunnel with test section dimensions of 300 by 600 mm at the Technical University  of Denmark. Fig.1a gives 
a schematic description of the experimental set-up. The jet issued normal to a flat plate insert through a circular pipe of 
diameter D = 24 mm with a bulk velocity of  W = 4.95 m/s. The crossflow velocity along the flat plate was U = 1.50 
m/s, producing  a jet-to-crossflow velocity ratio  W/U of 3.3. The Reynolds number based on the jet diameter D and the 
crossflow velocity U was 2400 nominally. Special consideration was given to establish fully-developed and self-
preserved  incoming flows in the pipe and on the flat plate, respectively. The results are discussed in reference to the 
(x,y,z) Cartesian coordinate system whose origin is at the center of the pipe at the jet exit as shown in Fig.1a. More 
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information on the flow conditions can be found in  Meyer et al. (2001), Meyer et al. (2002) and Özcan and Larsen 
(2003) who reported some early findings.  Pedersen (2003)  studied the coherent structures in the flow field  by using 
the POD (Proper Orthogonal Decomposition) analysis.     
 
The PIV system shown in Fig.1a consisted of two Kodak Megaplus ES 1.0 cameras with 60 mm Nikon lenses mounted 
in  near-Scheimpflug condition (angle between the cameras was  80°).  A double cavity Nd-YAG laser delivering 100 
mJ light pulses was employed to create a light sheet which was 1.5 mm thick. Cameras and  light sheet optics were 
mounted on the same traverse mechanism in order to accurately displace  the measurement plane.  Both the crossflow 
and the jet flow were seeded with 2-3 µm droplets of glycerol. The system was controlled by a Dantec PIV2100 
processor and the data were processed with Dantec Flowmanager version 3.4 using adaptive velocity correlation. 25 
percent overlap was used between interrogation areas. A calibration target aligned with the light sheet plane was used to 
obtain the geometrical information required for the reconstruction of the velocity vectors.  The reconstruction was 
performed by using a linear transformation and the calibration images were recorded for five slightly-displaced planes.  
Image maps were recorded with an acquisition rate of 0.5 Hz to yield 1000 instantaneous vector maps used to calculate 
the velocity moments. Two different configurations of the cameras and the light sheet were used to obtain data in 
constant-y (as shown in Fig.1a) and constant-z planes, having fields of view of  108 by  86 mm and  65 by 53 mm,
respectively. In both cases the velocity vector maps contained  33 by  37 vectors. Therefore, the linear dimensions of the 
interrogation areas varied between 1.5 and  3.4 mm. The rate of displacement tensor data to be presented are obtained at 
the z= 48 mm and 50 mm planes and also at  the  y=24 mm and  27 mm planes. Thus,  results are presented for the z=49 
mm and y=25.5 mm planes which are nominally referred to as  z/D=2  and   y/D=1 planes.  

4.  MEASUREMENT UNCERTAINTIES 
 
Table 1 presents the values of the spacing between velocity vectors δx, δy and δz for the data of z/D=2 and y/D=1
planes together with the estimated uncertainties in the normalized quantities at the intersection of the two planes. 
Uncertainties of the quantities  to be presented  in contour plots are stated  in figure captions. ∆q*, ∆k*, ∆d*ij and   ∆P*

are the uncertainties (plus and minus) in the normalized speed, turbulent kinetic energy, the rate-of-displacement (also 
rotation and strain) tensor components, and the production rate of turbulent kinetic energy, respectively. T*ij   is the 
truncation error (see below).  All uncertainties are specified for a  confidence level of  95 percent. The crossflow 
velocity U and the jet diameter D were used for normalization of the uncertainties. The possible use of  the jet velocity 
W in the normalization would produce smaller uncertainties.  Lourenco and Krothapalli (1995) report that the error in 
the measurement of the rate-of-displacement tensor can be divided into two components.  One is the truncation error 
associated with the finite difference scheme employed and the other is due to uncertainty in the velocity measurement. 
The velocity measurement error and the truncation error increase and decrease, respectively, as the spacing between the 
velocity vectors become smaller. Therefore, the total error in the rate-of-displacement tensor is minimal for an 
optimum spacing between the velocity vectors. Saarentino and Piiorto (2000) suggest that the value of the optimal 
spacing is 3 to 5 Kolmogorov viscous length scales for PIV measurements. In hot—wire anemometry, the same value of 
optimal spacing between velocity vectors is chosen as reported by Antonia and Mi (1993) and Zhou et al. (2003).  In the 
flow of the present study, the Kolmogorov length scale is estimated from isotropic turbulence relations as 0.12 mm 
which would make the optimal spacing between velocity vectors  approximately 0.5 mm. The spacing values shown in 
Table 1 are  3 to 7 times larger than the optimal value. PIV data of Kawanabe et al. (2001) show that the first and 
second moments of the velocity (and the production of turbulent kinetic energy) do not vary much  with the variations of 
the interrogation area size whereas the dissipation rate of turbulent kinetic energy increases significantly with increased 
spatial resolution until the optimal value is reached.  Even though the spatial resolution of the experimental data used in 
the present study is not sufficient for  measurement of the dissipation rate, results will be presented to show the 
applicability  of the proposed technique. If the optimal spacing had been used in the present study, the estimated 
uncertainties ∆d*ij and  ∆P* given in Table 1 could probably be reduced to  0.07 and  0.04, respectively.  However, 
this would cause a reduction in the size of the field of view by a factor of approximately four.  
 

Data Plane      δx (mm)     δy (mm)     δz (mm)      ∆q* ∆k* ∆d*
ij ∆P* T*

ij 

z/D=2             2.0             1.5            2.0          0.07          0.025         0.11         0.07          0.08         
 y/D=1             2.4             3.0            3.4          0.07          0.025         0.14         0.10          0.12         
 
Table 1-  Spacing between velocity vectors and estimated uncertainties in quantities at the intersection of the  planes   
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The truncation error Tij in the rate-of-displacement tensor  dij calculated  by the central difference scheme  given by 
 

Tij = - ( ∂ 3ui / ∂ xj
3 ) (δxj)2 / 6 (8) 

 
where the repeated index j does not imply summation. The normalized bound values of Tij are given in Table 1. If third 
order spatial derivatives of the flow field are known, the truncation error can be estimated from Eq. (8) as discussed in 
the next section. Since the truncation error is a systematic (bias) error, in principle, it can be removed by applying a 
correction to the rate-of-displacement tensor dij . However, measurement of the third order derivatives in the out-of-
plane direction requires data acquisition in four slightly-displaced parallel planes.   
 
The uncertainty in the rate of production of turbulent kinetic energy   ∆P can be estimated by applying the error 
propagation formula of Kline and McClintock  (Holman,1978) to   Eq. (5) which produces 
 

∆P = [ sij sij (∆A)2 + <u'i u'j> <u'i u'j> (∆B)2 ]1/2 (9) 
 
where  ∆A and   ∆B are the uncertainties in  <u'i u'j> and    dij (or   sij and  rij ), respectively,  which are assumed to be 
equal  for  all  components of the tensors. The error analysis of  Benedict and Gould (1996) indicates that   ∆A can be 
estimated from  
 

∆A = 2 urms ∆urms (10) 
 
where   urms is the root-mean-square of the velocity fluctuations and   ∆urms is the uncertainty in    urms which  was 
assumed to be equal in all three directions. The value of  ∆urms was chosen as 0.025U in  estimating the ∆P uncertainty. 
The uncertainty in the parameter of  the Q-criterion  may be estimated from   
 

∆Q = [ 8 rij rij
 + 4 ( sii)2 + 8( sij sij - sii

2 ) ]1/2 ∆B (11) 
 

5. RESULTS AND DISCUSSION 
 

Figs. 1b , 2a and 2b  present contour plots of   the normalized production rate of turbulent kinetic energy  P*=PD/U3,
the  normalized vorticity magnitude  ω*=2( r2

zy + r2
xz + r2

yx )1/2 D/U, and the normalized value of   Q parameter 
Q*=QD2/U2 , respectively,  in the z/D=2 plane. The aim here is not to emphasize the flow physics but rather to 
demonstrate the performance of the proposed technique.  The thin and thick dashed-lines indicate the jet exit and the 
zero value contours, respectively,  in these and all  subsequent figures.  The filled-diamond symbol at y/D=0 (line and 
plane of symmetry) and x/D=0.3 denotes intersection of jet trajectory with the  z/D=2 plane. Smoothness of the contours 
is indicative of  good data quality. The  largest component of vorticity (in absolute value) in this plane is  ζy = 2ryx 
which is negative upstream of the jet trajectory and positive downstream of it due to the action of the jet shear layer 
vortices.  The kidney-shaped contours of the vorticity magnitude around the jet exit are similar to those of  ζy. Fig.1b  
shows that production of turbulent kinetic energy is significantly large around the jet exit. The vortical structures at the 
jet exit  (the jet shear layer vortices and the counter-rotating vortex pair, Lim et al., 2001) stretch the flow field and 
cause an energy transfer from the mean field to turbulence which generates turbulent kinetic energy values that are 
significantly larger than those of the incoming jet and crossflow. Comparison of  Figs. 1b and 2a shows that  P* contours  
are  similar  to  those of  the  vorticity  magnitude around the jet trajectory but the production  rate of   
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Fig. 2    Contour  plots   of    a)  the  normalized  vorticity   magnitude    ω* = 2 ( r2
zy + r2

xz + r2
yx ) 1/2 D/U,    b)   the 

normalized value of  the  Q  parameter   Q*=QD2/U2 in  the  z/D=2 plane. Uncertainties in ω* and Q* are  
0.4  and 1.5,  respectively.  

 
turbulent   kinetic  energy  diminishes   much   faster  than  the  vorticity  magnitude away  from  the jet trajectory where  
the  Reynolds   stresses   are  small.   Fig. 2b  shows    that   the   maximal   positive   values of   Q* are  located  around  
points   A (x/D=1.1,  y/D=0.5)  and   B (x/D=0.4,  y/D=0.7).   These  locations  correspond  very  closely  to the positive 
and   negative    z-vorticity   regions,  respectively,   which   are   caused   by   the  side  arms  of  the  upstream and  lee-
side vortex loops  in  the vortex skeleton model of Lim et al (2001).  Fig. 2a shows that the maximal value locations of 
the vorticity magnitude are not related to points  A and B which are the presumed  vortex cores in this plane. This is  a 
well-known  inadequacy of  the vorticity  magnitude  in  identifying  vortex cores  (Jeong and  Hussain, 1995). 
 
Figs. 3a and  3b present contour plots  of  the normalized  second largest  eigenvalue  of  (sik skj + rik rkj),  λ2

*=λ2D2/U2

and  the normalized  summation of   eigenvalues  (of  sik skj + rik rkj),  λSUM
*= (λ1 + λ2 + λ3)D

2/U2 in  the  z/D=2 plane, 
respectively.  Jeong and  Hussain (1995)  report  that  negative  values of  λ2 indicate  a vortex core.  Comparison of  
Figs. 3a and 2b shows  that positive  Q  and negative λ2 criteria are almost equivalent in this plane.  Contours in  Figs. 
3b and 2b are identical due to the fact that  λSUM

*= -2Q* (Jeong and  Hussain ,1995).  This result shows  that  accuracy 
of the   eigenvalue  determination is   satisfactorily  high.   
 
Fig. 4a  presents contour plots of the normalized third order spatial derivative  (∂ 3u / ∂ x3)D3 /U in the z/D=2 plane. 
The thick dashed  lines indicate zero value contours. The central difference scheme was used to evaluate the derivative.  
Smoothness of  the contours suggest that measurement of the first and second spatial derivatives of the mean  rate-of-
displacement tensor may be accomplished with reasonable accuracy. A knowledge of these derivatives may be useful in 
modeling turbulence and estimating the truncation error (given by Eq.(8)) in the rate-of-displacement tensor. ∂ 3u/ ∂ x3

changes sign  at least three times along the x direction when  y/D is smaller than one.  Fig. 4b  shows variations of the 
normalized truncation error of  TijD/U predicted by Eq. (8) at the intersection of the  y/D=1 and z/D=2 planes.  Txy ,  Tyy 
and  Tzy were evaluated by using the data of the y/D=1 plane whereas the remaining  Tij components  were calculated 
from the z/D=2 plane data.  All of  Tij values are smaller than the estimated error bounds given in Table 1. 
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Fig. 3  Contour  plots  of    a)   the  normalized  value  of   the   second  largest eigenvalue    ( of  sik skj + rik rkj )
λ2

*=λ2D2/U2 b) the normalized value of   the summation of  eigenvalues  λSUM
*= ( λ1 + λ2 + λ3)D2/U2 in  the  

z/D=2 plane. Uncertainties  in  λ2
* and  λSUM

* are  0.9  and  1.5,  respectively. 
 

Fig. 4  a)  Contour  plot  of  the  normalized  third  order spatial derivative  (∂ 3u / ∂ x3)D3 /U   in the  z/D=2 plane.  
b)   Variation of  the normalized  truncation error   Tij

* at the intersection of  the  y/D=1 and z/D=2 planes. 
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Fig. 5  Variations of   a)  the normalized  speed   q* = q/U ,  b) the  normalized  turbulent  kinetic  energy k* = k/U2

at  the  intersection of  the  y/D=1 and  z/D=2 planes. 
 

In   the   remaining   section of  the  paper,  variation of  the   data  obtained   in   the   y/D=1  and   z/D=2  planes along  
the  intersection   line of  the  planes  will  be compared  with  each  other  in  order  to  assess  the  consistency  of   the   
measurements. A good agreement of the first and second moments of the velocity between the two data sets is  necessary 
if one further expects to see an  agreement of the rate-of-displacement tensor components. Figs. 5a and 5b give 
variations of  the  normalized  speed  q* = q/U =  (ui ui )1/2/U  and  the normalized turbulent kinetic energy k* = k/U2 =
< u'i u'i >/2U2, respectively, with  x/D. The legend shows the plane of the two data sets.  Uncertainty in the data  is  
indicated by error bars in this and all subsequent figures.  As the higher momentum jet traverses across the crossflow , 
the mean speed first increases and then decreases with increasing x/D.  A similar trend of the turbulent kinetic energy is 
also observed  since the production of  turbulent  kinetic energy  is  maximal around  the jet trajectory  
as shown in Fig.1b.  Fig. 5 shows that the differences between the two  data sets are smaller than the measurement 
uncertainties. This indicates that  repeatability of  the experiment  was  sufficiently good.  
 
Figs. 6a, 6b and 6c give variations of the normalized  components of the rate-of-rotation tensor  r*

yx , r*
xz and r*

zy 
( r*

ij =  rij D/U ), respectively, with x/D for  data obtained in the y/D=1 and z/D=2 planes. These components are equal 
to one-half of the vorticity vector components in the z, y and x directions. Fig. 6 shows that   r*

zy is always negative 
whereas   r*

yx and   r*
xz change sign more than once in this region of the flow.  A negative value of  r*

zy is  ssociated 
with rotation in the clockwise direction in constant-x planes when looking in the negative x direction.. Fig. 6c shows 
that the CVP, which rotates in the clockwise direction begins to form at a surprisingly small x/D value of  0.1. Negative 
and positive values of  r*

xz are associated with  rotation in the counter-clockwise and clockwise directions in  
constant-y planes when looking in the positive y direction. Fig. 6b shows that  r*

xz changes sign from negative  to  
positive  around  x=1  which  may  be  interpreted  as the  boundary  between  the  counter-clockwise and   
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Fig. 6  Variations of  the  normalized components of the rate-of-rotation tensor  a) r*
yx ,  b) r*

xz , c) r*
zy at the 

intersection of   the  y/D=1 and  z/D=2 planes.  
 
clockwise   rotating  jet   shear  layer  vortices   (i.e.,  the  upstream  vortex   loops  and  lee-side  vortex  loops  in the 
vortex skeleton model  of Lim et al. (2001) ).  Negative and positive values of  r*

yx are due to clockwise and  counter-
clockwise rotating vortices  in constant-z planes when looking in the negative  z direction.. These vortices are probably  
the side arms of  the lee-side and upstream vortex loops. 

Figs. 7a, 7b and 7c  present  variations of the normalized  components of the rate-of-strain tensor s*
yx , s*

xz and s*
zy 

(s*
ij = sij D/U), respectively, with x/D for  data obtained in the y/D=1 and z/D=2 planes.  s*

yx , s*
xz and  s*

zy are 
measures of  the  rate of  distortion in the constant  z, y and x planes for the incompressible flow field considered in the 
present study. Similar to the rate-of-rotation tensor components, s*

zy is always negative whereas s*
yx and s*

xz change 
sign more than once. The magnitude of the rate-of-strain  tensor components are smaller than those of the rate-of-
rotation tensor which indicates that  rotation is  larger than distortion generally.  Relatively large values of s*

zy shown in 
Fig. 7c  indicates that there is significant deformation mainly  in the x direction around the jet exit. 
 
Figs. 8a and 8b present variations of the normalized production and dissipation of turbulent kinetic energy (P* =PD/ U3

and ε* =εD/U3), respectively, with x/D for the data obtained in the y/D=1 and z/D=2 planes. Both the production and 
the dissipation rates, which are negligibly small for negative values of  x/D, reach maximal values around x/D=0.8 and 
decrease monotonically for larger values of x/D. The rate of production decreases much more rapidly than the rate of 
dissipation.  This result suggests that turbulent kinetic energy producing  coherent structures coexist with highly 
dissipative small scale eddies around the jet core. Outside the jet core, the production process stops abruptly whereas the 
dissipation process continues at a lower rate. No error bars are shown for ε* which have unknown accuracy as discussed 
earlier. Fig. 8b shows that, as expected, dissipation rate values for the z/D=2 plane data are significantly larger than 
those for the  y/D=1 plane, which have lower spatial resolution. The same trend is seen  in  Fig. 8a  although  to a  lesser 
degree.  
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Fig. 7  Variations of  the normalized components of the rate-of-strain  tensor a) s*
yx , b) s*

xz ,  c) s*
zy at the 

intersection of   the  y/D=1 and  z/D=2 planes.  
 

Figs. 6, 7 and 8 show that the data sets obtained in the y/D=1 and z/D=2 planes agree with each other within the 
measurement uncertainties. This agreement indicates consistency of the measurements. The magnitude of the error bars 
in Figs. 6 to 8  is  considerably  large compared  to  the  values of  r*

ij , s
*

ij and  P* , which are low in this region. In 
general the values in the z/D=2 plane were larger  than those in the y/D=1 plane.  The maximal absolute values of  P*,
ω* and  Q* were  around  6, 10 and 11, respectively,  in the z/D=2 plane as shown in Figs. 1 and 2. The estimated 
uncertainties in the maximal values of P*, ω* and  Q* were 4,  4  and  14  percent, respectively.  

6.  SUMMARY 
 
A technique is described for planar measurements of the mean rate-of-displacement tensor by using a conventional 
stereoscopic PIV system. The technique is tested in a turbulent jet in crossflow. Smoothness of the contour plots 
presented  indicates the successful implementation of the technique. Consistency of the measurements is verified by the 
agreement between two sets of data obtained in two perpendicular planes. The estimated uncertainties in the maximal  
values of  the vorticity magnitude (ω) and  the production rate of  turbulent kinetic energy (P) are  4  percent.  Accuracy 
of the data can be improved and the dissipation rate of turbulent kinetic energy can be measured if optimal spacing 
between velocity vectors is employed. The feasibility of measuring  the  truncation  error in the rotation–  and strain–rate  
tensors is also demonstrated.  Evaluation  of the parameters in the Q–criterion  and negative–λ2 techniques  helps to  
find   locations  of  vortex cores  in  the mean flow field.  Measurement uncertainties are discussed and algebraic 
relations for uncertainties in  P and the parameter of the Q–criterion are presented. 
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Fig. 8  Variations of  the  normalized  rate of    a) production  of  turbulent  kinetic  energy P* , b) dissipation of 

turbulent  kinetic  energy ε* at  the  intersection of  the  y/D=1 and  z/D=2 planes. 

ACKNOWLEDGMENTS 
 
Thanks are  due to  Dr. Jakob  M. Pedersen for his  assistance in the PIV measurements. The first author acknowledges  
receipt  of  a  grant  between 1999 and 2001 in scope of  the NATO Science Fellowship Programme by the Scientific 
and Technical Research Council of  Turkey and also  financial support from DTU, Department of Energy Engineering  
and  Department of Mechanical Engineering.  

REFERENCES 
 
Andreopoulos, Y. and  Honkan, A. (1996).  “Experimental techniques for highly resolved measurements of rotation, 
strain and dissipation-rate tensors in turbulent flows”,  Measurement  Science and  Technology , 7, pp. 1462-1476 
 
Antonia, A. and  Mi, J. (1993). “Corrections for velocity and temperature derivatives in turbulent flows”, Experiments in 
Fluids, 14, pp. 203-208  
 
Benedict, L.H. and Gould, R.D. (1996).  “Towards better uncertainty estimates for turbulence statistics”, Experiments in 
Fluids, 22, pp. 129-136 
 
Dahm, W.J.A., Su, L.K. and  Southerland, K.B. (1992). “A scalar imaging velocimetry technique for fully-resolved 
four-dimensional vector velocity field measurements in turbulent flows”,  Physics  of  Fluids A, 4, pp. 2191-2206 

Holman,  J.P.  (1978). “Experimental Methods for Engineers” , McGraw-Hill, New York, USA 
 



12 

Hu, H., Saga, T., Kobayashi, T., Taniguchi, N. and Yasuki, M. (2001). “Dual-plane stereoscopic particle image 
velocimetry: system set-up  and its application on a lobed jet mixing flow”, Experiments in Fluids, 31, pp. 277-293 
 
Hunt,  J.C.R., Wray, A.A. and  Moin, P. (1988).  “Eddies, stream and convergence zones in turbulent flows”,  Report 
CTR-S88, Center for Turbulence Research, NASA-Ames Research Center, Stanford University,  California, USA 
 
Jeong, J. and  Hussain, F. (1995). “On the identification of a vortex”,  Journal of  Fluid Mechanics, 285, pp. 69-94  
 
Kawanabe,  H.,  Kawasaki, K. and  Shioji, M. (2001).  “Evaluation of turbulence production and dissipation in a jet 
using high-resolution PIV”,  4th International  Symposium on Particle Image Velocimetry, Gottingen, Germany, 
September 17-19  
 
Lim , T.T., New, T.H. and  Luo, S.C. (2001). “On the development of large scale structures of a jet normal to a cross 
flow”,  Physics  of  Fluids, 13, pp. 770-775 

Lourenco,  L. and Krothapalli, A. (1995).  “On the accuracy of velocity and vorticity measurements with PIV”,  
Experiments in Fluids, 18, pp. 421-428 
 
Meng, H. and  Hussain, F.  (1993).  “In-line recording and off-axis viewing (IROV) technique for holographic particle 
velocimetry”,  Applied Optics, 34, pp. 1827-1840 
 
Meyer, K.E., Özcan, O., Larsen, P.S., and Westergaard, C.H. (2001). “Stereoscopic PIV measurements in a jet in 
crossflow ”,  Second Int. Symp. on Turbulence and Shear Flow Phenomena, Stockholm, Sweden,  June 27-29 
 
Meyer, K.E.,  Özcan, O. and   Westergaard, C.H.  (2002).  “Flow mapping of a jet in crossflow with stereoscopic PIV”,    
Journal of  Visualization, 5, pp. 225-231 
 
Mullin, J.A   and Dahm, W.J.A. (2004). “A study of velocity gradient fields at intermediate and small scales of  
turbulent shear flows via dual-plane stereo particle image velocimetry ”,  Report No: 044475-3, Laboratory for 
Turbulence and Combustion, University of Michigan, Ann Arbor, Michigan, USA 
 
Nishino, K.,  Kasagi, N. and   Hirata, M. (1989).  “Three-dimensional particle tracking velocimetry based on automated 
digital image processing”,    Journal Fluids Engineering, 111, pp. 384-391 
 
Özcan, O.  and  Larsen, P.S.  (2003).  “Laser Doppler anemometry study of a turbulent jet in crossflow ”,  AIAA 
Journal, 41, pp. 1614-1616 
 
Pedersen, J.M. (2003).  “Analysis of planar measurements of turbulent flows”,  Ph.D. Thesis, Dept. of Mechanical Eng., 
Technical University of Denmark, Lyngby,  Denmark 
 
Saarenrinne, P. and Piirto, M. (2000). “Turbulent kinetic energy dissipation rate estimation from PIV velocity vector 
fields”,  Experiments in Fluids, 29, pp. S300-S307 
 
Tao, B. (2000). “Development of holographic particle image velocimetry and its application in three-dimensional 
velocity measurements and modeling of high Reynolds number flows”, Ph.D. Thesis, Dept. of Mech. Eng., John 
Hopkins University, Baltimore, Maryland, USA  
 
Tennekes, H. and  Lumley, J.L. (1972). “A First Course in Turbulence”, The MIT Press, Cambridge, Massachuhusetts 
and London,  England 
 
Wallace, J.M. and   Foss, J. (1995).  “The measurement of vorticity in turbulent flows”,  Annual Review of Fluid 
Mechanics, 27, pp. 469-514 
 
Zhou,  T.,   Zhou, Y.,   Yiu,  M.W.,  and  Chua, L.P.  (2003).    “Three-dimensional   vorticity  in  a  turbulent  cylinder  
wake”,  Experiments in Fluids, 35, pp. 459-471 


