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Abstract 

 
A method is presented to evaluate the turbulent kinetic energy viscous dissipation rate, ε, from the direct 
measurement of the mean squared turbulent velocity spatial gradients 2

ji )x/u( ∂∂ . The latter have been 
estimated using Laser Doppler Anemometer to measure simultaneously the velocities in two different points in 
the flow. To minimise the effect of virtual particle bias and of geometry bias the control volume dimensions 
have been reduced collecting the light in side scatter and using short focal length lenses. The methodology has 
been tested in the isotropic and homogeneous region of a turbulent flow downstream of a grid where ε is 
proportional to the kinetic energy decay. The measurements were carried out in a water rig for a Reynolds 
number ReM of 5500, based on a mesh size M (5.5 mm) of the grid, along the centreline in a range between 23-
35 M. Isotropic and homogenous conditions were satisfactorily achieved. In agreement with theory, the 
turbulent kinetic energy decayed exponentially along the centreline with a decay coefficient of 1.3. In Figure 1 
the viscous dissipation rate derived from the kinetic energy decay (blue squares) is compared with the direct 
measurement ε (red circles) for different distances from the grid. The average difference between the two 
values along the centreline is about 7%. Further measurements were taken in the wake of a cylinder for a 
Reynolds number Red of 7200. The aim was to separate the contributions to the total kinetic energy viscous 
dissipation rate due to the periodic and the turbulent motions. 
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Figure 1 Decay of kinetic energy viscous dissipation rate along the centreline behind the grid using two 
different methods: dissipation derived from the kinetic energy decay (blue squares); direct measurement of ε 
(red cirles) 
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1. Introduction 
The knowledge of the rate of dissipation of turbulence kinetic energy per unit mass, ε, is of great importance in 
fluid mechanics, e.g. many turbulence models include an equation for ε and therefore is essential for testing the 
applicability of the models commonly used. However its accurate experimental determination poses a challenging 
problem. The rate of dissipation of turbulence kinetic energy is defined as follows Hinze (1975): 
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These limitations are usually overcome assuming, even for more complex flows, local isotropy, simplifying 
equation (1) as follows: 
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As pointed out by Elsner & Elsner (1996), with this hypothesis the different terms comprising the dissipation 
equation are related as follows: 
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The assumption of homogeneous turbulence is less restrictive than that of isotropic turbulence and assuming 
symmetric flow (u2 = u3) and symmetric geometry ( 32 x   x ∂∂=∂∂ ), equation (1) becomes:  
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In the published literature, (e.g. Tennekes & Lumley (1973)), nearly homogeneous and isotropic flow is usually 
assumed to be reached behind a grid, where the wakes created by the rods merge together, after an initial region of 
high inhomogeneity and anisotropy. As described by Tennekes & Lumley (1973), in the homogeneous and 
isotropic region the equation for the turbulence mean kinetic energy can be simplified as follows: 
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The rate of change of the kinetic energy in time (the convective term) is equal to the viscous dissipation, so that 
2q decays constantly along the axis X1 of the main flow, following a relationship of the form: 
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where M is the mesh spacing, n is the exponent characterising the decay of turbulence, x is the distance from the 
grid, and x0 is a virtual origin which accounts for the fact that the effective origin of the velocity fluctuations may 
not coincide with the location of the grid. 
 
In the earliest study of grid generated turbulence, referred to in Comte-Bellot & Corssin (1966), the values of n and 
x0/M varied respectively from 1 - 1.3 and 0 - 10, depending on the initial conditions such as mesh size M, rod shape 
(parallelepipedal or cylindrical), solidity ratio σ, and mesh Reynolds number ReM. 
There have been many studies of grid turbulence since this seminal work of Comte-Bellot & Corssin (1966). The 
description of the flow has, in general, improved with the accuracy of the measurement techniques and for this 
reason only the most recent relevant works are considered below. 
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Mohamed & LaRue (1990) performed an extensive study of this flow in a wind tunnel and reviewed some of the 
earliest works. They emphasised that using only data belonging to the homogeneous isotropic region, n and x0/M 
do not depend on the initial conditions and assume values around 1.30 and 0 respectively. They suggested different 
methods to determine the beginning of the isotropic region: the skewness of the velocity fluctuation S(u) and of the 
velocity derivative S(du/dx) should be equal to 0 and to a constant respectively, and the ratio between the 
dissipation calculated with equation (7), for grid turbulence flow, and with the equation (2), for local isotropic 
flow, should be 1 for the entire homogeneous and isotropic region. As ReM was decreased, the start of the 
homogeneous area was found to be located closer to the grid. 
In addition to the method used by Mohamed & LaRue (1990), Tresso & Munoz (2000) determined also the 
beginning of the isotropic and homogenous region for different initial conditions, by applying directly the 
definition of isotropy ( 0  u u 21 = ). Using this approach they determined an experimental law describing the 
beginning of the isotropic and homogeneous region as a function of ReM. 
In agreement with Mohamed & LaRue (1990), Zhou et al. (2000), measuring at a distance x/M higher than 20, 
obtained an exponent n equal to 1.33 and a value of x0 equal to 0. 
The flow conditions and the main results of the aforementioned works are summarised in Table 1: 
 

Table 1. The decay power-law exponent (n), coefficient (A) and other parameters in previously published 
works. 

Ref. ReM x 10-3 Fluid 
Beginning of 

Isotropic 
Hom. Region 

n A x0/M σ M/d 

Comte-
Bellot & 
Corssin 
(1966) 

135-17 Air 20* 1.1-
1.33 0.05 3-5 0.31-

0.44 - 

6 " 25 1.30 0.0435 0 0.34 5.4 

10 " 40 1.30 0.0424 0 " 5.4 
14 " 50 1.28 0.0364 0 " 5.4 

Mohamed & 
LaRue 
(1990) 

12 " 55 1.29 0.0490 0 " 5.3 
Zhou et al 

(2000] 10.5 " 30* 1.33 - 0 0.35 5.2 

10.7 18 
22.9 28 

Tresso & 
Munoz 
[2000] 34 

" 
57 

- - - 0.28 8 

* These works did not evaluate the coordinate x/M where the flow becomes isotropic and homogeneous. This 
value identifies the distance from the grid where the first measurements were made. 
(-) This symbol means that the parameter is not available  

 
Direct measurement of the spatial gradients using a two channel LDA was attempted by Michelet (1998) in grid 
turbulence flow. Because of the difficulty encountered in measuring the decay of the kinetic energy (n=0.33), 
Michelet (1998) compared the values of the dissipation using equation (6) for homogeneous flow and equation (2) 
for local isotropic turbulence. The latter was computed by integrating the energy spectrum of the velocity 
fluctuations. The agreement obtained was excellent, but the expressions of the equations applied leave some doubt 
as to the validity of the results. 
 
Another work which attempted to calculate directly the spatial gradients, has been reported by Benedict & Gould 
(1996). The intention of that work was to calculate the gradients by estimating the Taylor micro scale from the 
spatial correlation coefficients Rii(∆xj) and Rii(∆xi) in sudden contraction flow. They pointed out how the 
dimensions of the control volumes affect the accuracy of the determination of the spatial correlation coefficient, as 
a control volume which is too large gives a poor resolution of Rii(∆xj). They suggested that for a proper estimation 
of Rii(∆xj) the control volume should be of the order of the Kolgomorov scale. 
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Apart from the necessity to have an isotropic and homogeneous flow, it is necessary to discuss the errors involved 
in multidimensional LDA measurement. Three types of bias are relevant in such systems.  
Boutier et al (1985) considered the possibility that in 3-D LDA measurements two different particles could satisfy 
a simultaneity criterion, crossing the control volumes within a defined time interval, even if they would not pass 
through the overlapping region. This results in a source of error, termed virtual particle bias, which leads to a 
substantial underestimation of the Reynolds stresses.  
The second type of bias, the geometry bias, was firstly determined by Brown (1989); he established that even a 
single particle, with a consistent velocity component in the plane containing the axis of the two control volumes, 
could pass outside the overlapping region within the time coincidence window.  
The effect of the third type of bias, the time coincidence bias, was determined by Benedict & Gould (1996) during 
their study of the spatial correlation coefficient. When the two control volumes are separated by a small distance 
along the direction of the dominant velocity of the flow, it is possible that a single particle will cross both the 
control volumes within the time coincidence window, resulting in an overestimation of the correlation coefficient. 
 
2. Flow configuration, LDA system and measurement procedure 
The rig consists of a single loop pipe arrangement with a by-pass and a centrifugal pump, which directs the water 
into an expansion/contraction section containing a hexagonal honeycomb to straighten the flow. A perforated plate 
is placed downstream the contraction to reduce the turbulence levels before the flow reaches the grid. The 
measurements are taken in the second half of a transparent acrylic test section to allow the flow to become 
homogeneous and isotropic. A heat exchanger jacket in a tank downstream of the test section maintains the 
temperature of the water at a constant value. The dimensions of the grid and of the test section used are shown in 
following Table 2: 
 

Table 2. Test section and grid dimensions 
Grid Test section dimensions 

(W x W x L) Mesh size (M) Wire diameter (D) 
72 x 72 x 184 mm3 5.5 mm 1 mm 

 
The LDA employed is a Dantec system and comprises three probes mounted on a transverse that can be remotely 
moved in all the directions. One of the probes can measure two velocity components while the others can measure 
only one. The probes are designed to work in the back-scatter mode. 
 
The arrangements of the probes for the measurements of the gradients 
( ) ,xu 2

11 ∂∂ ( )2
31 xu ∂∂ , ( )2

33 xu ∂∂ , ( )2
13 xu ∂∂ are shown in Figure 2. The two-channel probe shown in blue is 

displaced along the directions indicated. Depending on the gradient of interest, the green probe measures the u1 
velocity (Figure 2.(a)) or the u3 velocity (Figure 2.(b)). The blue and green probes incorporate lenses of focal length 
240 mm and of 310 mm respectively. The control volume dimensions for the lenses mounted on the three probes 
are shown in Table 3. 
To reduce the longer dimension of the green control volume the light scattered by the 10 µm diameter particles is 
collected in side scatter by the red probe. The red probe incorporated a lens of focal lens 310 mm or 500 mm 
depending on the arrangement (Figure 2 (a) or (b) respectively) to ensure that all three lenses focused at the same 
point. 
 
Accurate calculation of the effective size of the control volume in side scatter is not possible because, even if the 
diameter of the fibre optic cable (50 µm), substituting in this system the pinhole usually placed in front of the 
photomultiplier, is known, the exact lens magnifying power is unknown. From geometry considerations, taking in 
to account that the angle between the optical axes of the side probes and of the centre probe is about 22°, the longer 
dimension of the green control volume for side scatter should be around 0.24 mm. 
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Table 3. Focal length and control volume dimensions, in back scatter, of the lenses employed  

Probe Focal length Diameter dx1 Diameter dx2 Length dx3 

Blue Probe 240 mm 0.05 mm 0.05 mm 0.37 mm 
Green probe 310 mm 0.07 mm 0.07 mm 0.63 mm 

310 mm 0.07 mm 0.07 mm 0.63 mm 
Red Probe 

500 mm 0.125 mm 0.124 mm 1.7 mm 
 

(a) (b) 

X3 X2 

X1 

X2 

X3 X1 

Figure 2 Probe arrangement to measure the velocity gradients: (a) ( ) ,xu 2
11 ∂∂ ( )2

31 xu ∂∂ ; (b) ( )2
33 xu ∂∂ , 

( )2
13 xu ∂∂ . 

 
The probes are aligned in air using a pinhole of 50 µm. Once in water, to overcome the effect of refraction, it is 
necessary to adjust the relative position of the three control volumes along the X2 axis by a known distance. As 
suggested by Benedict & Gould (1996) a further optimisation of the alignment is achieved computing the spatial 
correlation coefficient Rii(0) for different relative positions of the probes until a maximum is found. 
 
The spatial gradients ( )2ji xu ∂∂  are estimated calculating the function fii(∆xj) defined in (9) for the different 
positions examined around the reference point xi: 

2
jjijijii ))t,xx(u)t,x(u()x(f ∆+−=∆  (9)  

When computing the coefficient fij(∆xj), the velocity fluctuations ui in the two different points of measurement 
must come from particles which cross the two control volumes at the same time. This condition is imposed by 
finding the couples of particles that satisfy the following simultaneity criterion: 

|t1-t2| < τw, (10)  
where t1 and t2 are the arrival time and τw is a time coincidence window. 
Once the function fij(∆xj) is known, the spatial gradient can be calculated from (11) 
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The spatial gradient can be evaluated by finding the slope of the straight line which best fits the points (∆xj 
2, 

fii(∆xj)) for ∆xj values close to zero. Once all the gradients have been determined, the value obtained for the 
dissipation rate estimated from equation (6) for homogenous flow is compared with the value obtained from 
equation (7) for grid turbulence flow. 
 

5 



3. Grid turbulence flow 
The experiments were carried out along the centreline of the test section for a mesh Reynolds number ReM of 5500. 
Figure 3 shows the rate of decay of the kinetic energy and of the turbulence intensities  Uu

2

1
2

1  and 
2

1
2

3 U/u  
along the X1 direction. It is evident that the flow is not perfectly isotropic as the turbulence intensities along axis X1 
and X3 are not the same. This difference was also present in previous works, such as Comte-Bellot & Corssin 
(1966) and Zhou et al. (2000) and wasn’t considered to be significant, as the difference between the rms values in 
the two directions is within the accuracy of the LDA system. 
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Figure 3 Decay of  Uq
2

1
2 ,  Uu

2
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1 and 
2

1
2

3 U/u along the duct centre line 

As suggested by Mohamed and Larue (1990), the coefficients of the exponential law shown in (8) have been 
estimated applying a least-squares linear regression between points belonging to the homogenous and isotropic 
region. This is found to begin at a distance of 20 M from the grid. Considering that Mohamed & Larue (1990) 
determined that the beginning of the isotropic and homogeneous region is closer to the grid as ReM is decreased, 
this value should be considered in good agreement with the others shown in Table 1. The decaying coefficients n 
found for  U

2

1
2q ,  U

2

1
2

1u and 
2

1
2

3 U/u  are 1.31, 1.27 and 1.35 respectively. 
 
4. Rate of dissipation for the grid turbulence flow 
 
The direct measurement of the spatial gradients has been carried out between 20 and 35 M for a ReM of 5500. 
In Figure 4 the values assumed by fii(∆xj) at a distance of 23 M from grid, are plotted against ∆xj

2 for all the 
gradients measured. The time coincidence windows τw applied is of 0.03 ms. All the fii(∆xj) have been evaluated 
for distances ∆xj between 0-0.7 mm with a step of 0.1 mm. 
Considering Figure 4, it can be observed that the values of fii(∆xi) for ∆xj

2 > 0 are much higher than for f11(0). This 
substantial difference has to be attributed to the relatively large dimensions of the control volume. On the one hand, 
when the probes are displaced, it is very unlikely that two particles will cross the centre of the two control volumes 
at the same time to give a highly correlated pair of velocity values. It is more probable that one of them will pass 
through the centre of one control volume while the other will pass far away from the centre of the second control 
volume, resulting in a higher distance between the points where the control volumes are crossed than the effective 
displacement ∆xj effectuated. This leads to velocity pairs less correlated than expected. On the other hand, when 
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the two probes are aligned at the same point, each particle crossing one control volume will more likely cross the 
second control volume in the same point giving always highly correlated velocity pairs. 
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Figure 4 Variation of fii(∆xj) with ∆xj
2 in x1/M=23.09: (a) ( )2

33 xu ∂∂ , ( )2
13 xu ∂∂ ; (b) ( ) ,xu 2

11 ∂∂ ( )2
31 xu ∂∂ . 

The same effect is evident also in Figure 5 where the variation of the spatial correlation factors R33(∆x3) and 
R33(∆x1) is plotted against ∆xj . The value of R33(∆xj) for ∆xj equal to zero is much higher than those for ∆xj 
different than zero. For this reason the (0, fii(0)) pairs have not been considered in the line fitting to determine the 
spatial gradient values.  

 As can be seen in Figure 4 the value of R33(0) is 0.92 
and far from the ideal correlation coefficient that 
should be 1 for ∆xj equal to zero. There are three main 
reasons to explain this difference. The first one has to 
be attributed to the size of the control volume which, 
despite the small dimension, is still too big for a 
perfect correlation. The second one is due to the noise 
level. In fact the necessity to have a sufficient amount 
of data in coincidence between the two channels leads 
to use higher values of the High Voltage (HV). This 
was confirmed through trials with a decreasing HV, 
for which the correlation reached a maximum value of 
0.96. The third, probably the most important, has to be 
attributed to the flow and the limits of the BSA. In fact 
the turbulence level is very small so that the 
correlation and the fii value depends mostly on the 
second decimal digit of the velocity fluctuation value. 
This problem is more visible if the light scattered by 
the same control volume is collected from two 
different probes, one in back scatter and one in side 

scatter. Despite the velocities measured belonging for certain to the same particles, the correlation value is 0.96. 
Therefore this value has to be considered as the intrinsic error of the system. 
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Figure 5 Correlation factors R33(∆x3) and R33(∆x1) in 
x1/M of 23.09 

 

The perfect symmetry of the two correlation functions represent in Figure 4 is artificial and not experimental. To 
plot the parabola best fitting the points illustrated in Figure 4, R33(-∆xj) has been set equal to R33(∆xj). Considering 
in Figure 4 the fitted lines for the four different spatial gradients, it is possible to appreciate qualitatively how the 
slopes of the gradients ( )2

31 xu ∂∂ and ( )2
13 xu ∂∂ are higher and around twice the slopes of ( )2

11 xu ∂∂ and of 

( )2
33 xu ∂∂ respectively. This is visible also in Figure 5 where the parabola fitted between the R33(∆x1) values is 

narrower than that fitted in R33(∆x3). The variation of the spatial gradients 
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( )2
11 xu ∂∂ , ( )2

13 xu ∂∂ , ( )2
31 xu ∂∂ , ( )2

33 xu ∂∂

22 24

along the duct centreline is plotted in Figure 6. The gradients 
have been evaluated by fitting a line between the values of fii(∆xj) for ∆xj varying between 0.1-0.6 mm. This 
corresponds to a range of 1-5 Kolgomorov scale η. The best fitting line has been found maximising the correlation 
factor R of the linear interpolation. Regardless of the experimental scatter of the gradient values, the isotropic 
conditions illustrated in equations (3), (4) are satisfactorily achieved. 
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Figure 6 Comparison between the values assumed by the spatial gradients directly measured (red, black, blue and 
green circles) and the ( )2

11 xu ∂∂ gradient calculated from the kinetic energy decay (violet line) and from Taylor's 
hypothesis (triangles). 

In Figure 6 the values of the spatial gradients measured directly are compared with the values of 
( )2

11 xu ∂∂ calculated with the kinetic energy decay and with Taylor hypothesis. The latter gradients have been 
calculated applying the slotting technique (Van Maanen & Tummers (1996)), normally used to determine the 
autocorrelation coefficient. In the present work the technique is used to evaluate the fii coefficients for different 
time intervals ∆t. Even in this case the time coincidence window used is 0.03 ms. The different methods 
implemented show a good agreement. 
 
A comparison between the values of the scaled dissipation (

3

1UM/  ε ) from the present and previous works is 
shown in Figure 7. The dissipation values are calculated from the kinetic energy decay. The coefficients A and n of 
the kinetic energy decay have been taken from Mohamed & LaRue (1990) who, as already mentioned, revisited 
some of the earliest work on grid turbulence flow. The non dimensional dissipation values have been plotted for 
X1/M in the range of 20-40 M. The values of 

3

1UM/  ε  shown in Figure 7 differ by a large amount (46 % 
difference between the values of the curves located furthest away from each other). 
Considering the high values of ReM used in some of the past works, it is possible that for some of them the 
isotropic region commenced somewhere in the range or even at higher distances from the grid, but this do not 
affect the validity of the graph. In fact the dissipation decaying coefficients (1+n) of the curves plotted vary by 
small amounts (2.26-2.35), so that can be assumed that all the curves remain parallel to each other and their 
differences do not become smaller for higher values of x1/M. The high difference between the scaled values 

3

1UM/  ε  is due to the substantial variation of A (0.0364-0.0664) from one work to the other. From Figure 7 it can 

be observed that the values of 
3

1UM/  ε  of the present work lie between the curves of the previous works. 
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Figure 7 Comparison between the values assumed by the dimensionless dissipation 
3

1UM/  ε in the present and in 
previous works. 

The comparison between the values of the dissipation calculated from the decay of kinetic energy and from the 
direct estimation of the gradients have been illustrated in Figure 1. According to the isotropic relation (4), the 
contribution to dissipation due to the spatial gradient ( )2

23 xu ∂∂  in (6) have been substituted with the spatial 

gradients ( )2
31 xu ∂∂  and ( )2

13 xu ∂∂ . 
 
5. Flow in the wake of a cylinder 

 
 

Figure 8 Diagram showing the locations where 
the measurements were taken 

X1/d 

X2 

X3 

Line of 
measurement 

X1 

X3 

The measurements were carried out across the wake of the 
cylinder along a line parallel to the X3 direction located in the 
centre of the test section and at a distance from the cylinder of 
X1/d equal to 10 (Figure 8). The points of measurements are 
X3/d: -0.2, -0.1, 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.8, 1.2, 1.6, 2.  
The Reynolds number Red is 7200 and the diameter d of the 
cylinder is 7.2 mm.  
 
The method used to determine the gradients is the same as 
described earlier for the grid turbulence flow. In this case it is 
necessary to separate the turbulence from the periodic motions 
due to the presence of mean flow variations due to vortex 
shedding. As for the grid turbulence flow, the two data series, 
one from each of the two probes, have been scanned to find 
the particles that satisfy the condition of equation (10).  
The periodic motions have been identified by low pass 
filtering the spectra of the two data series. 
In Figure 9 the total velocities of the particles in coincidence 
and the velocities due to the periodicity of the flow (the low 
pass filtered velocities) are shown. 
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Figure 9 Comparison between the values of the low pass filtered velocity and the total velocity of the particles in 
coincidence for each channel (blue and green). 

Considering that the frequency of the periodical motion is 30 Hz, the data have been low pass filtered up to a 
frequency of 50 Hz. The turbulent velocities have been calculated by subtracting the periodic velocity from the 
total velocity of the particles in coincidence. The variations of the spatial gradients values against X3/d are shown 
in Figure10. The gradients have been calculated by determining the slopes of the lines providing the best fit of the 
pairs (∆xj, fii(∆xj) for ∆xj varying between 0.1-0.3 mm.  
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Figure 10 Variations of the spatial gradients ( )2
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6. Conclusions 
A LDA method to measure the spatial gradients contributing to the kinetic energy viscous dissipation rate has been 
presented.  
In the first part of the paper the method has been tested to determine the gradients in grid turbulence flow. The 
gradients have been estimated finding the line best fitting the pairs (∆xj, fii(∆xj)) with ∆xj/η varying between 1-5. 
The isotropic conditions shown in (3) and (4) have been satisfactorily achieved. Moreover the values of dissipation 
calculated adding the contributions of the different gradients are comparable with the values of dissipation derived 
from the kinetic energy decay for homogeneous flow. 
In the second part of the paper the method was applied to a cylinder flow. The results show that in both cases ε can 
be determined with good accuracy with the present LDA system. 
These studies in fact have been conducted partly in order to establish the suitability of the ε measurement technique 
in a relatively simple flow, before its application to measure the dissipation rate in a stirred vessel. 
 
 
Roman characters 
 
Symbols  Units 

A Coefficient in the turbulence decay law for grid generated turbulence, 
equation  - 

d Cylinder diameter m 

D Grid wire diameter m 

dxi Control volume dimension in the Xi direction  m 

fii(∆xj) Mean of the squared difference of the values of the i-th velocity fluctuation 
component measured at a distance ∆x along the j-th direction - 

L Test section length m 

M Grid wire mesh spacing m 

n Decay exponent of kinetic energy in grid generated turbulence - 

2q  Mean turbulence kinetic energy m2 s-2 

Red Cylinder flow Reynolds number based on the diameter - 

ReM Mesh Reynolds number - 

Rii(∆xk) Space correlation coefficient between the values of the i-th velocity 
fluctuation component at a distance ∆x along the k-th direction - 

ti Arrival time of a particle in the control volume s 

Ui Velocity component along the i-th direction m s-1  

ui Veclocity fluctuation along the i-th axis m s-1 

iU  Mean velocity along the i-th axis m s-1 

W Test section side m 

x0 Virtual origin value of the velocity fluctuations in grid generated turbulence 
along the axis of the test section  m 

 
Greek characters 
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Symbols  Units 

∆t Time interval s 

∆xi Displacement along the i-th axis m 

( ) ,xu 2
ji ∂∂  Spatial gradient of ui velocity fluctuation along j-th axis s-2 

ε Kinetic energy viscous dissipation rate m2 s-3 

ν Kinematic viscosity m2 s-1 

σ Solidity ratio - 

τw Time coincidence window s 
 
Abbreviations 
 
BSA Burst spectrum analyser 

LDA Laser Doppler anemometer 
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