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ABSTRACT

Challenging issues on separated flows at high Reynolds numbers are discussed for several prototype flows:
separated-and-reattaching flows; separated flows around cylindrical bluff bodies;, separated flows around
axisymmetric and plane-symmetric bluff bodies. These flows are characterized by large-scale vortices which interact
with each other or with a solid surface. Structure and dynamics of the large-scale vortices are discussed, together
with the low-frequency modulation of the vortices whose time scale is an order of magnitude greater than the vortex-
shedding period. It is argued that the modulation is an intrinsic property of the separated flows. The advent of
computers and laser-applied technology have been making it more and more efficient and economical to obtain
spatio-temporal structure of vortices in the separated flow. What is lacking is a physical model which predict
essential properties of the separated flows such as the base pressure. This is because the base pressure is determined
by the overall dynamics of the near wake flows. A strategy of interactive control of unsteady separated flows which
assumes the existence of a precursor of large-scale separation is also discussed.



1. INTRODUCTION

In this paper separated and complex turbulent flows are defined as flows with large-scale separation of boundary
layer from a solid surface at high Reynolds numbers. These flows are characterized by the formation of large-scale
rolling-up vortices and unsteadiness characterized by the motion of the vortices which interact with each other or
with a solid surface. There are an enormous number of these flows which are encountered in engineering
applications. The present paper does not intend to give an extensive review on these flows but to discuss some
fundamental properties and physical models of a few prototypes of the separated flows, with the expectation that
such information will serve to understand separated and complex turbulent flowsin general.

Separated and complex turbulent flows, which will hereinafter be referred to as separated flows, have extensively
been studied by experiments and numerical simulations to yield distributions of statistical flow properties such as
time-mean velocities, pressure, Reynolds stresses, correlations, and spatio-temporal structure of large-scale vortices.
These are experimental results, which are useful in the design of flow apparatus, but to have experimental resultsis
not equivalent to understand the flow. The advance of numerical simulations and experiments aided by high
technology such as Lasers and computers is just to make it rapid and economical to obtain the experimental results.
A flow is understood when a physical or mathematical model which can predict essential properties of the flow is
constructed. In this sense we have not yet understood separated flows. This is because unsteadiness due to the
motion of large-scale vortices and their three-dimensionality are characteristic of separated flows.

Separated flows can be classified into two categories. One is the flow with reattachment, while the other is the flow
without reattachment. Typical examples of the former is the flow over a backward-facing step and the leading-edge
separation bubbles of aerofoils and blunt plates or blunt circular cylinders, while those of the latter are the flow
around cylindrical bluff bodies such as circular cylinders and normal plates. The former is characterized by the
interaction between vortices and the solid surface, while the latter is characterized by the interaction between vortices
shed from the separation points.

In this paper the following flows are chosen as the prototype of separated turbulent flows: separated-and-reattaching
flows; separated flows around cylindrical bluff bodies; three-dimensional separated flows around axisymmetric and
non-axisymmetric bluff bodies. Low-frequency unsteadinessin these flows and active control of separated flows are
also discussed. Mention will be made of important aspects which await laser-applied measurements, together with
the need for a physical or mathematical model which can predict essential properties of the flow.

2. SEPARATED-AND-REATTACHING FLOWS

We consider the flow generated by boundary-layer separation from the square-cut leading edge of a blunt plate or a
blunt circular cylinder of semi-infinite length, whose centerline is aligned with the main flow. In the time-mean
sense the separated shear layer reattaches on the solid boundary to form a closed recirculating zone, thus being
referred to as a separated-and-reattaching flow or separation bubble. Thisis the simplest configuration because the
flow is dependent only on Reynolds number once the geometry of the body has been defined. It is not true in the
separation bubble behind a backward-facing step which is dependent on properties of the approaching boundary
layer and the expansion ratio of the flow passage. It may be noted that nominally two-dimensional and axisymmetric
separation bubbles have basically similar properties.

Main features of the separation bubble of a blunt plate with the square-cut leading edge will be discussed. The
boundary layer along the front face of the body is laminar up to sufficiently high Reynolds numbers because thisis
accelerated towards the corner of the leading edge. The boundary layer separates from the edge, being shed
downstream as a separated shear layer. The shear layer rolls up by the Kelvin-Helmholtz instability to form
rectilinear vortex tubes whose axis is aligned with the edge; these vortices are called spanwise vortices. The
spanwise vortices merge to become larger and larger with increasing longitudinal distance from the edge. At the
same time the spanwise vortices deform in the spanwise direction, being rapidly three-dimensionalized to develop
turbulence. This processisbasically the same as that of a plane mixing layer.

The difference between the separated shear layer and the plane mixing layer is that large-scale vortices in the former
impinge on the surface of the body at a certain longitudinal distance from the edge, being shed downstream without



experiencing further merging. This position of impingement is near the time-mean reattachment position of the shear
layer, which is defined as the longitudinal position at which the time-mean streamline starting from the edge
reattaches on the surface. The pressure fluctuation generated by the impingement of the vortices propagates
upstream to be accepted at the sharp leading edge to generate vorticity fluctuation which enhances the rolling-up of
the shear layer. The resulting large-scale vortices subsequently impinge on the surface. In this sense, the leading-
edge separation bubble is a self-excited flow maintained by the feedback loop (Kiyaet a. 1997). The feedback loop
seems to be the case in nominally two-dimensional and axisymmetric separation bubbles. The feedback mechanism
is a working hypothesis, having not been confirmed by experiments or numerical simulations. It is a challenge to
obtain experimental evidence of the feedback loop by spatio-temporal measurements of the velocity, vorticity and
pressurefields.

The number of merging of spanwise vortices up to the impingement position, the length scale of the impinging
vortices, and the frequency of their shedding F, are related to the height of the separated shear layer from the surface
h (Sigurdson 1995). The height is, on the other hand, related to the surface pressure just downstream of the edge,
which is called the base pressure p,. Assuming that the pressure within the separation bubble is constant in the
direction normal to the surface, the velocity at the edge of the shear layer Ugis given in the form Ug =kUy , where Uy
isthe main-flow velocity, k = (1 - Cpp)*? and Cy, is the base-pressure coefficient. Sigurdson (1995) argues that the
vortex-shedding frequency is determined from an empirical relation F,h/Ug = constant, which is the case for vortex-
shedding frequency of cylindrical bodies. Thisformula can be employed in the separation bubble because we have a
vortex street, although it is symmetric, if we takes into account corresponding image vortices within the body. On
the other hand, the assumption of the feedback loop yields a relation F,xg/U; = constant, where Xy is the distance
between the edge and the time-mean reattachment position (the reattachment length) and U, is the average velocity
of convection of rolling-up vorticesin the shear layer (Kiyaet a. 1997). With areasonable assumption that h and Us
are proportional to xgr and U, respectively, the two equations are equivalent. We have no theoretical means to
determine the base pressure py, height h and length xg of the separation bubble.

The base pressure is related to the shape of the separated shear layer, especialy its curvature, near the separation
edge; the higher the curvature, the lower is the base pressure if the main-flow velocity is fixed. The shape of the
shear layer is determined by the balance of out-flow by entrainment from the separation zone and the in-flow from
the reattachment region, the inflow being the reverse flow along the surface. Thus the shape of the separated shear
layer depends on the overall dynamics of flow in the recirculating region; the feedback loop is also included in this
dynamics. The point is that we have not yet understood the overall dynamics to the extent that the parameters py, h
and xg van be predicted.

The frequency of vortex shedding F, can probably be predicted by the inviscid linear stability analysis based on an
assumed velocity profile in the separation bubble at sufficiently high Reynolds numbers Huerre & Monkewitz
1990). The absolute instability is expected for the velocity profile with sufficiently high reverse-flow velocity.
Moreover, the global instability analysis, which includes the effect of viscosity, for the steady separation bubble will
predict a critical Reynolds number and the fundamental frequency at the onset of time-dependent flow. The critical
Reynolds number for the separation bubble of a blunt plate (based on the thickness) is known to be approximately
320, based on the main-flow velocity and thickness of the plate (Sasaki & Kiya 1991). These instability analyses
will enhance our understanding on the mechanism of the vortex shedding.

Sinusoidal forcing of separation bubbles yieldsfurther information on their flow physics. An exampleis the forcing
of the leading-edge separation bubble of ablunt circular cylinder (Sigurdson 1995; Kiya et a. 1997). The forcing is
made by a sinusoidal disturbance generated by an oscillating jet through a thin slot along the separation edge. The
velocity fluctuation at the edge of the laminar boundary layer at the separation edge isq = gesin(2pFt), where g is the
velocity component in a plane containing the axis of the cylinder, qr and F are the amplitude and frequency of
forcing, andt istime.

The reattachment length xg plotted against the frequency F attains aminimum at a particular value F = F, = (1.6-2.1)
Uy/d for a fixed root-mean-square amplitude ge' = ge/~/2. It should be noted here that there are two types of
instability in the separation bubble. One is the Kelvin-Helmholtz instability and the other is the shedding-type or
impinging-type instability (Sigurdson 1995, Nakamura & Nakashima 1986). The fundamental frequency of the
initial KH instability Fx scales to the momentum thickness of the shear layer at the separation edge and the velocity



U, thus being a function of Reynolds number. On the other hand, the fundamental frequency of the shedding-type
instability is the vortex-shedding frequency F,, being fairly constant at sufficiently high Reynolds numbers. The
most-effective frequency Fr,is much smaller than Fx and greater than but closer toF,.

Sigurdson (1995) argues that the shedding-type instability is the primary mode of instability in the separation bubble
and thus the frequency Fy, should be of the same order as that of the shedding-type instability. On the basis of the
feedback |oop and another assumption on the relation between the minimum reattachment length and the wavelength
of the sinusoidal disturbance, Kiyaet al. (1997) show that F/F, = 2", where n is the number of merging of rolling-up
vortices until the reattachment position, not being determined in the framework of this theory. The value of n
appears to decrease as the amplitude g’ increases. These heuristic models need be mathematically formulated to
yield arelation between n and g¢'.

3. SEPARATED FLOW AROUND CYLINDRICAL BLUFF BODIES

Flow around cylindrical bluff bodies such as a circular cylinder at sufficiently high Reynolds numbers is
characterized by the interaction between shear layers emanating from two primary separation points. From
engineers point of view, the time-mean and fluctuating drag and side forces, and the vortex-shedding frequency are
among the most important properties. These properties have been obtained by experiments and numerical
simulations. However, we have notheory which can predict the forces and frequency without any empirical input in
a range of Reynolds number where the vortex shedding occurs in the near wake. A theory of drag of a circular
cylinder is constructed from the first principle by Smith (1979) on the assumption of steady and symmetric laminar
flow. The predicted the drag and base pressure are in excellent agreement with results of numerical simulations of
steady symmetric flow (Sychev et al. 1998). However, the predicted drag is much lower than the drag obtained by
experiments and numerical simulations which include the alternate vortex shedding. This means that the
unsteadiness of flow in the near wake caused by the vortex shedding plays a crucial role in the theory of drag at high
Reynolds numbers. We have not yet constructed such atheory.

There exist inviscid wake models which yield the time-mean pressure distribution along the wetted surface of a bluff

body if the boundary-layer separation point and the pressure there, that is the base pressure, is given beforehand
(Zdravkovich 1997). For bluff bodieswith salient edges such as anormal flat plate, only the base pressure is needed.
To calculate the separation point of the boundary layer we need to know the pressure distribution on the surface,

which is possible if the shape of the separated shear layer is known. The shape of the shear layer, on the other hand,
depends on the separation point and the base pressure. The most crucial parameter is the base pressure. If the base
pressure is given, the separation point can be calculated by the boundary-layer theory by considering the effect of the
outer flow. The base pressure depends on the overall dynamics of the near wake. The near-wake dynamicsis not yet
understood to the extent that the base pressure and the vortex-shedding frequency can simultaneously be predicted,
although a great amount of information on spatio-temporal vortex structures have been obtained by experiments and
numerical simulations. What is needed seems to find a new way how we should look at the near-wake vortex
structurein view of construction of the theory of base pressure and drag.

The frequency of vortex shedding appears to be predicted by the inviscid linear stability theory for an assumed
velocity profile with reverse flow. The fundamental frequency predicted by the theory is in good agreement with
vortex-shedding frequency (Huerre & Monkewitz 1990; Asai et al. 1996). A global instability analysis with viscous
effects included is expected to yield the critical Reynolds number for the onset of the periodic flow and the
fundamental frequency. However, no information of the base pressure is obtained from the instability analysis. We
have no unified theory which can predict the vortex-shedding frequency and the base pressure.

4, SEPARATED FLOW AROUND AXISYMMETRIC AND PLANE-SYMMETRIC BLUFF BODIES
4.1 Spheres and Circular Disks

Wakes of three-dimensional bluff bodies have been studied mostly for axisymmetric bodies such as a sphere and a
circular disk normal to the main flow. Large-scale vortices in these nominally axisymmetric wakes appear to be
hairpin-like vortices or helical vortices. Details of the vortex structure are obtained at low and moderate Reynolds
numbers by flow visualizations and direct numerical simulations. The results will be reviewed, emphasizing
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unsolved issues.

A global linear stability analysis (Natargjan & Acrivos 1993) shows that periodic vortex shedding from a sphere
occurs at Reynolds number (based on the diameter) Re = 277.5 with Strouhal number & = 0.113; the most unstable
mode at this Reynolds number is helical (m=1). The shed vortex is one-sided hairpin vortices which have planar
symmetry up to Re = 350-375 (Mittal 1999). The orientation of the hairpin vortices are probably determined by
initial conditions or uncontrollable irregularities in the main flow. In this context, it deserves mentioning that, when
the main flow is a uniform shear flow with linear velocity profile, the head of the hairpin vortices is aways in the
direction of high-velocity side (Sakamoto & Haniu 1995). On the other hand, Johnson & Patel's (1999) numerical
simulations reveal oppositely oriented hairpin vortices with planar symmetry in the sphere wake. A hairpin vortex is
first shed from the recirculating region and then an opposite-sided hairpin vortex is generated downstream of the
former by the influence of nearby hairpins and the main flow. It needs explanation that other numerical simulations
and flow-visualization experiments have not shown such oppositely oriented hairpin vortices.

At Reynolds numbers higher than Re = 350-375 the angle of shed hairpin vortices changes irregularly from cycle to
cycle, the planar symmetry not being maintained. The hairpin vortices are laminar at Re = 500, while they are
turbulent at Re = 1,000 (Tomboulides et al. 1993). However, the critical Reynolds number of laminar-to-turbulent
transition and the process of the transition have not been studied in detail. Numerical simulations reveal no definite
hairpin vortices at Re = 2.0° 10* (Tomboulides et al. 1993; Kuwahara 1999), because the hairpin vortices are
probably obscured by turbulent eddies. No efforts have been made to reveal hairpin vortices at high Reynolds
numbers by means of a proper data processing.

The vortical structure at Reynolds numbers greater than O(10%) is studied only by experiments. Taneda's (1978) flow
visualization shows a wavy vortical structure with planar symmetry in the range of Re = 10*-3.8" 10°, the plane of
symmetry changing slowly and irregularly. This wavy structure suggests the periodic shedding of hairpin vortices
but it is not clear whether they are one-sided or not. On the other hand, Berger et a. (1990) found a helical structure
at Reynolds numbers less than 10* although no mention is made on the helical structure by Taneda (1978). At Re =
3.8" 10°-10° an attached hairpin vortex is formed in the downstream side of a sphere, its legs extending downstream
(Taneda 1978). The attached hairpin vortex and the legs are basically steady except for small-scale turbulent eddies,
and thus there is no periodic component in the wake. We have no information on vortex structure at Re > 10°. It isa
challenge to study the vortical structure in the sphere wake at high Reynolds numbers beyond 10°.

No theories are available to predict the base pressure at Reynolds numbers at which vortex shedding occurs. An
inviscid wake-source model is presented to calculate the pressure on the wetted surface of axisymmetric bodies with
the separation point and the base pressure given beforehand (Bearman & Fackrell 1975).

4.2 Elliptic Disks and Rectanqular Plates

Wakes of elliptic disks are expected to have properties between those of axisymmetric bluff bodies and two-
dimensional ones. Kuo & Baldwin (1967) discovered an unexpected result that far wakes of elliptic disks of aspect
ratio of 1.67 and 5.0 have elliptical cross sections, but the major axis of the wake is aligned with the minor axis of the
body. This effects was observed in both time-mean velocity and turbulence intensity in the wakes from several
minor diameters to distances of 250 minor diameters downstream of the body. They also found a periodic velocity
fluctuation in the major plane on top of that in the minor plane. More detailed study on the elliptic wakes is made by
Kiya& Abe (1999) to reveal several novel aspects of the elliptic wakes, at Reynolds number Re = 2.0 10, based on
the minor diameter of the body d. Their results will be discussed in what follows, together with those for wakes of
rectangular plates which have basically similar properties as the elliptic wakes (Kiya& Abe 1999).

Velocity contours in the wake in the cross sections normal to the main-flow are elliptic up to approximately (4.0-
4.5)d downstream of elliptic disks of aspect ratio of 2.0 and 3.0, the major and minor axes of the wake being aligned
with those of the body, respectively. Beyond this position the velocity contours are also elliptic but the major axis of
the wake is aligned with the minor axis of the body and vice versa. This phenomena is referred to as the axis
switching in view of the similar phenomenon found in a jet issuing from an elliptic nozzle (Ho & Gutmark 1987,
Hussain & Husain 1989).

The mechanism of the axis switching is completely different in the wake and the jet. In the elliptic jet the axis
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switching is caused by the self-induced deformation of elliptic vortex loops shed from the nozzle and the merging
interaction between neighbouring vortex loops, as demonstrated by Hussain & Husain (1987). In the elliptic wake,
however, no elliptic vortex loops are generated along the edge of the disk; rather, hairpin vortices similar to those in
the sphere wake are generated near the end of recirculating region in the wake, being alternately shed downstream.
The hairpin vortices are oppositely oriented like Karman vortices for cylindrical bodies, and their top is basically in
the minor plane of the body. The axis switching occurs because the hairpin vortices moves outwards by the self-
induced velocity, increasing the width of the wake in the minor plane. On the other hand, the width of the wake in
the major plane decreases due to the in-flow accompanied by the out-flow in the minor plane, by the requirement of
continuity, over several minor diameters downstream of the body. The crossover of the widths occurs around x/d =
4.0-4.5, x being the streamwise distance from the body, which is the position of the axis switching.

The alternate shedding of the hairpin vortices generates periodic velocity fluctuations in the minor plane, as first
found by Kuo & Baldwin (1967). The vortex-shedding frequency is afunction of the aspect ratio of the body. Kiya
& Abe (1999) confirmed the existence of another periodic velocity fluctuation in the major plane, which is aso
mentioned by Kuo & Baldwin (1967). A vortical structure which might be responsible for the periodic component in
the major plane has not been revealed yet. Both flow visualizations and direct numerical simulations at a lower
Reynolds number of Re = 200 suggest that this periodic componentis caused by a meandering motion of the hairpin
vortices in the direction of the major axis. The frequency in the major plane is a smooth function of the aspect ratio,
so that this frequency is expected to be associated with the intrinsic instability in the near wake. It is not clear
whether the meandering motion is also the case at much higher Reynolds numbers.

The frequencies of the periodic components plotted against the aspect ratio are almost the same for the elliptic disks
and the rectangular plates at the same Reynolds number. This strongly suggests that the vortex structure in the wake
is basically the same for both bodies, despite the existence of sharp corners in the rectangular plates. The periodic
components should be attributed to the global instability of the near wake, whose analysis has not been attempted
yet. Such an analysis is challenging because unstable modes should be three-dimensional, having two fundamental
frequencies and different growth rates around the major and minor planes. It might be possible that the axis
switching can be interpreted by the different growth rates.

The oppositely-oriented hairpin vortices in the wake of elliptic disks is expected to change to the one-sided hairpin
vortices in the sphere wake at a critical aspect ratio. The transition may give us further insight into the dynamics of
wakes of three-dimensional bluff bodies.

5. LOW-FREQUENCY MODULATION IN SEPARATED FLOWS

Periodic vortex shedding occursin all the flows mentioned above. Amplitudes of velocity and pressure fluctuations
associated with the periodic motion appears to experience modulation whose central frequency is much lower than
that of the vortex shedding. This modulation is referred to as the low-frequency modulation or unsteadiness, which
will be discussed in this section.

5.1 Wakes of Cvlindrical Bluff Bodies

The low-frequency behaviour is experimentally observed for normal plates and circular cylinders as bursting in time
histories of the lift and drag in a wide range of Reynolds numbers Roshko 1993; Schewe 1983; Szepessy &
Bearman 1992, among others). The low-frequency modulation is also observed in velocity fluctuations in the wake
of circular cylinders (Kiya & Ishikawa 1997, Haniu et al. 1995). Intervals of the modulation are an order of
magnitude greater than the vortex-shedding period and they are not periodic. Szepessy & Bearman (1992) notes
effects of aspect ratio on the modulation time scale. However, it is not evident that the modulation is related entirely
to end effects.

In thisrespect, Nagjjar & Balachandar's (1998) direct numerical simulations (DNS) are noteworthy. Their simulations
are made for the separated flow past a zero-thickness flat plate normal to afree stream at Reynolds number Re = 250,
which is based on the height of the plate. The long-time signatures of the drag and lift indicate a low-frequency
modulation with a period of approximately 10 times the primary vortex-shedding period. The amplitude and
frequency of drag and lift variations during the vortex shedding are strongly modulated by the low-frequency



unsteadiness.

A physical interpretation of the low-frequency behaviour is that the flow gradually varies between two different
regimes: aregime H of high mean drag and aregime L of low mean drag. In the regime H the shear layer rolls up
closer to the plate to form coherent spanwise vortices, while in regime L the shear layer extends farther downstream
and the rolled-up Karman vortices are less coherent. In the high-drag regime three-dimensionality is characterized
by coherent Karman vortices and reasonably well-organized streamwise vortices connecting the Karman vortices.
The results of the simulations strongly suggests that the low-frequency modulation is an intrinsic property of
nominally two-dimensional wakes of cylindrical bodies.

A mechanism of origin of the low-frequency modulation is not settled yet. Najjar & Balachandar (1998) conjecture
that the formation of spanwise and streamwise vortices is not in perfect synchronization, and that the low-frequency
modulation is the result of thisimbalance or phase mismatch. Largeirregularities called vortex dislocations observed
in the cylinder wake at Reynolds numbers of a few hundreds (Williamson 1996) are expected to cause modulations
of amplitude of velocity fluctuations by the Karman vortices. Moreover, it is not clear whether the modulation of the
drag and lift and that of the velocity fluctuations in the wake are caused by the same phenomenon.

5.2 Wakes of Axisymmetric and Plane-symmetric Bluff Bodies

As noted by Roshko (1993), there is a great need to settle the question of possible extraneous effects from end
conditions for the low-frequency modulation in nominally two-dimensional flows. In this respect, nominally
axisymmetric flows have advantage; they deserve more attention from laboratory and numerical experiments
(Roshko 1993). It has been shown that there exists low-frequency modulation in the wake of axisymmetric bluff
bodies.

One-sided hairpin vortices are formed in the wake of a sphere to be shed periodically as mentioned in section 3.1.
Direct numerical simulations at Re = 500 and 1,000 (Tomboulides et al. 1993) demonstrate the cycle-to-cycle
variations in the vortex shedding angle. This cycle-to-cycle variations, which are accompanied by the irregular
rotation of the separation point azimuthally around the rear part of the sphere, induces a low incommensurate
frequency of approximately 1/4 of the vortex-shedding frequency. The low-frequency component is also observed in
Mittal & Najjar's (1999) simulations. Flow-visualization experiments Taneda 1978, among others) indicate
irregular, low-frequency rotation of vortex structures in the sphere wake, but no experimental measurements are
made of their typical frequencies.

Berger et al. (1990) observed a low-frequency oscillation in the near wake of a circular disk normal to the main flow
atRe=15 10*-3.0" 10°, whose frequency is approximately 1/3 of the vortex shedding frequency. The mode of
this low-frequency oscillation appears to be basically axisymmetric (m = 0), and is attributed to a pumping (periodic
shrinkage-and-enlargement) motion of the recirculation region. No explanation is made of a mechanism for the
pumping motion. The pumping motion has not been reported for the sphere wake.

A low-frequency modulation is reported for the wake of elliptic disks of aspect ratio of 2 and 3 (Kiya & Abe 1999).
The modulation is not obvious in the power spectrum of velocity fluctuations in the wake but becomes evident if a
wavelet transform is made to the velocity fluctuations. The Morlet wavelet transform has a succession of peaks of
modulus of the complex wavelet coefficient W(a, b), where a is the time scale and b is the translation, at the time
scale which corresponds to the period of vortex shedding in the minor plane and that of the meandering motion in the
major plane. The modulus at the time scale a corresponding to the vortex-shedding period |W is the convolution of
waveform of the real part of the wavelet coefficient. On the other hand, peaks and valleys of the waveform of the
real part appears to approximately correspond to peaks and valleys of the original velocity fluctuations. This is
approximately so because the original velocity waveforms are contaminated by turbulence components. Thus the
power spectrum of the fluctuating component of modulus W[ is expected to contain information on the low-
frequency modulation of amplitude of the periodic component associated with the vortex shedding and the
meandering motion.

A broad peak is observed in the power spectrum of modulus in both the major and minor planes; the central

frequency of the peak can be interpreted as the representative frequency of the low-frequency modulation. The
representative frequency is approximately 1/5 of the vortex-shedding frequency in the minor plane; the same is also
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the case for the representative frequency of low-frequency modulation of the meandering motion in the major plane.
It may be noted that these representative frequencies are of the same order as those for spheres and circular disks.
The low-frequency modulation in the elliptic wakes is not an artefact of the wavelet transform. Thisis supported by
its spatial coherence. The spatial coherence is demonstrated by the cross correlation of the fluctuating components of
modulus obtained in each plane at opposite positions near the edge of the near wake. The value of the cross
correlation is positive at zero time lag, indicating that the low-frequency modulation is statistically in phase in each
plane. On the other hand, the cross correlation of | W[ at the edges of the near wake in the different planesis negative
at zero time lag; thus the low-frequency modulation is statistically out of phase in the different planes. The above
results suggest that, when the wake is in the phase of enlargement in the major plane, the wake in the minor plane is
in the phase of shrinkage, and vice versa. The same result is obtained in a range of 2.0-8.0 minor diameters
downstream of the body, so that the low-frequency modulation is of large length scale. Changes of vortical structure
in the wake associated with the low-frequency modulation are to be studied to elucidate a mechanism which is
responsible for the modulation.

5.3 Separated-and-Reattaching Flows

Low-frequency modulation is also observed in nominaly two-dimensional and axisymmetric separated-and-
reattaching flows: backward-facing step flows; leading-edge separation bubbles of blunt plates and blunt circular
cylinders. The modulation in these flows is sometimes referred to as flapping because it is accompanied by a
transverse oscillation of the separated shear layer. The flapping motion has been found in the power spectra of
surface-pressure fluctuations and velocity fluctuations in the separation zone. The central frequency of the flapping
motion is of the order of 1/5-1/6 of the vortex shedding frequency, being of the same order as that for the three-
dimensional wakes. The flapping motion is an intrinsic property of the separation bubbles, not being due to
extraneous effects from end effects. This is supported by the fact that the flapping is found in the leading-edge
separation bubble of ablunt circular cylinder, in which no end effects are included.

The mechanism of the flapping motion is conjectured as follows. Eaton & Johnston (1982) suggest that this is
caused by an instantaneous imbalance between the entrainment from the recirculation zone and the reinjection of
fluid from the reattachment region. An unusual event causes a short-time breakdown of the spanwise vorticesin the
separated shear layer, which would temporarily reduce entrainment rate and thereby cause an increase in the volume
of recirculating fluid. This increase will move the shear layer away from the surface and increase the short-time
averaged reattachment length. This enlargement-and-shrinkage motion of the separation bubble is confirmed by a
conditional-sampling technique (Kiya & Sasaki 1985). The mechanisms proposed by Cherry et al. (1984) and Driver
et al. (1987) are more or less similar to the above one if ‘a short-time breakdown of the spanwise vortices in Eaton &
Johnston (1982) is replaced by 'a temporary interruption to shear-layer growth/coalescence process' in Cherry et al.
(1984) and by ‘a disorder of roll-up and pairing process in Driver et al. (1987). The pseudo-periodic nature of the
flapping motion seems to be inconsistent with the assumption that an unusual event causes the breakdown of the
spanwise vortices, suggesting a deterministic mechanism. Flow visualizations and spatio-temporal measurements of
vortical structures associated with the flapping motion are needed to find more detailed properties and the
mechanism of the flapping motion.

6. ACTIVE CONTROL OF UNSTEADY SEPARATED FLOWS

Flow separation from a solid surface should be avoided in most of engineering applications; when the separation is
unavoidable, its spatial extent and unsteadiness should be reduced as much as possible. Attempts have been made to
realize this by an active control. Asa prototype of unsteady separated flows, we consider the flow around an aerofoil
undergoing an irregular pitching motion of sufficiently large amplitudes. Similar unsteady separation appears when
the direction of approaching flow changes randomly such as in wind-turbine blades. We want to suppress the
separation or to reduce the separation zone as small as possible at all phases of the pitching motion by an interactive
control system in which a precursor of large-scale separation, if it exists, is detected to operate an actuator. A number
of challenging issues have to be overcome to realize thisinteractive control.

One of such issuesiswhether the precursor really exists or not. An experiment on an aerofoil undergoing a pitching-
up motion with a constant angular velocity indicates the existence of a precursor in velocity and surface-pressure
time histories (Mochizuki et al. 1999). The detection of the precursor determines the timing of operation of the



actuator to suppress the otherwise large-scale separation. A wide margin of time between the detection of the
precursor and the operation of the actuator is crucial for the effective control.

The development of actuators is another challenging issue. The actuator should sufficiently be small and have a
short response time and sufficient power to prevent large-scale separation. The synthetic-jet actuator (Smith &
Glezer 1997) is a promising candidate for such an actuator. The function of this actuator is akin to that of blowing
from aslot on the surface of the body.

In what follows, an introduction will be made on a few researches in the authors's laboratory towards the above-
mentioned issues.

6.1 Precur sor of Separ ation

A NACAOQ015 airfoil undergoes a pitch-up motion from attack angle a (t) = 0° to 30° about its quarter-chord position
with aconstant pitch rate w. The non-dimensional pitch rate S = wc/(2U), where U is the main-flow velocity and ¢
ischord, is 0.012. Reynolds number based on chord is 4.0~ 10°. The instantaneous surface pressure is measured at
various positions in the mid-span plane on the suction side. Preliminary measurements indicated that the separation
starts from the trailing edge, moving upstream with increasing angle of attack.

The surface pressure fluctuations at a fixed point are found to have a part of a sinusoidal waveform with growing
amplitude before a high-frequency and large-amplitude fluctuation which means the large-scale separation. The
sinusoidal waveform appears to start approximately at 2.0c/U before the signal of separation at the position 0.45c
downstream of the leading edge. A wavelet analysis of this signal shows that the frequency of the sinusoidal waveis
approximately 10.0U/c. The growth of the amplitude before separation is approximately exponential.

This sinusoidal wave can be interpreted as a precursor of separation on the basis of the following reason. Just before

separation a velocity profile with an inflection point appears at the point of observation. A linear inviscid stability

analysis of such a flow is made by Michalke (1990), showing that the fundamental frequency of instability is a
function of the distance between the inflection point and the surface. Thistheory predicts the fundamental frequency

of 7.0U/c for the measured velocity profile, which is of the same order as that of the experiment. The difference is

conjectured to be partly attributed to effects of the longitudinal pressure gradient due to the surface curvature in the

experiment, which are not included in the theory.

Does the precursor exist at higher pitch rate S or in other type of unsteady separated flows? How is the effects of
Reynolds number? These are challenging issuesto be tackled in the future.

6.2 Optimum Timing of Operation of an Actuator

An important issue is the margin of time from the detection of the precursor to the onset of separation. Mochizuki et
a. (1999) studied an optimum timing of dynamic-stall control of a pitching-up aerofoil by means of awall jet along
the suction surface. Thetiming is optimum in the sense that the energy of the jet required to suppress the dynamic
stall isminimum. In their experiment a NACAQ020 aerofoil of chord ¢ undergoes a pitching-up motion from a(t) =
0° to 30° with a constant angular velocity about its quarter-chord position in the main flow of velocity U. The non-
dimensional pitching rate Sis in a range of 0.008-0.023. Reynolds number based on the chord is 9.0 10*. A thin
slot of widthb = 0.004c islocated at a position of 0.04c from the leading edge to issue the wall jet of velocity V; for
control. The timing of start of the jet was controlled by a computer-regulated proportional valve. Without the
control the large-scale separation is observed at a time when the angle of attack reaches to a = 28°. The origin of
timet = O istaken at thisinstant.

When the time of start of the control jet is fixed at ts (< 0), the large-scale separation is suppressed for a velocity V;
greater than a critical value Vjc. This critical value is fairly constant V,/U = 3.1 in the range of UtgJ/c < -5.5 but
rapidly increases as the time Utg/c tends to 0. In view of energy of the jet needed to suppress the separation it is
undesirable to start the jet too early because the longer the time of issuing, the larger is the total energy. The total
energy E defined by



E= 5(1/2)r V2bIV, dt

where t, is the time when the pitching-up motion is over, attains a significant minimum at UtJ/c = -6.0. The
minimum energy is approximately 10% of the energy of the main flow, which is the value of E with V; replaced by
the main-flow velocity U. Thisoptimum timing isfairly independent of the pitching ratein arange S= 0.008-0.023.

The experiment described in Section 5.1 shows that the instant at which the precursor is detected on the surface-
pressure fluctuation is approximately Ut/c = -2.0 at the position of 0.42c downstream of the leading edge for S =
0.012. Unfortunately this happens to be later than the optimum timing Uts/c = -6.0. A different precursor or criterion
is needed for an interactive control of the unsteady separation.

6.3 Separation Control by a Chain of Vortex Rings

The separated shear layer of a stalled aerofoil rolls up to form a chain of spanwise vortices. If avortex ring or a
vortex pair is introduced into the shear layer, the interaction between the shear-layer vortices and the external
vortices is expected to generate larger scale of vortices than those in the original shear layer (Kiya et al. 1986; Kiya
et a. 1999). These studies suggest that the entrainment rate of the shear layer can be enhanced by the vortex
interaction, and thus the reduction in the separation zone.

Experiments are made to bombard the rolling-up vortices in the shear layer of a stalled flat-plate aerofoil by vortex
rings to examine to what extent the vortex interaction is effective in reducing the separation zone, thus reducing the
drag and increasing the lift (Kiya et al. 1999). Vortex rings of the same size and circulation are successively

introduced into the shear layer near the leading edge with frequency F. The interaction is found to produce a
compact rolling-up vortex just downstream of the leading edge to reduce the size of the separation zone.

The effectiveness of the vortex interaction on the reduction of the separation zone can be measured by a change in
the momentum defect in the near wake M, which is a good measure of drag acting on the aerofoil. The momentum
defect is a function of the frequency F and the circulation of the vortex ring G.  The reduction in the momentum
defect amounts to approximately 20% of M of the base flow for the frequency of Fc/U > 4.0. The momentum defect
attains a broad minimum at the frequency of Fc/U = 4.0. This value remains the same when the main-flow velocity
isincreased by the factor of 2.

The reason why M attains a minimum at a particular frequency Fc/U = 4.0 can be interpreted as follows. Periodic
forcing of stalled flow around aerofoils by acoustic waves and oscillating jets, yields a maximum lift at a particular
forcing frequency, F,. The drag is expected to attain a minimum at the same frequency because the height of the
separation zone is reduced to the maximum extent. The frequency normalized in the form Fpc/U is in a range of 3-4
(Zaman & McKinzie 1991; Zaman 1992), 1-3 (Hsiao et a. 1989), and 2 (Bar-Sever 1989), being of the same order as
the optimum frequency Fc/U = 4.0. Thusthe reason islikely to enhance the shedding- type instability or impinging-
type instability mentioned in section 2.

The momentum defect decreases with increasing circulation of the vortex rings to become fairly constant at values of
G greater than roughly G/(Uc) = 0.3. This is probably because such vortex rings pass through the separated shear
layer, leaving more or less the same effects on the shear-layer vortices, as suggested by the two-dimensional
numerical simulation of avortex pair interacting with shear-layer vortices (Kiyaet a. 1999). Thevaue G(Uc) = 0.3
is approximately 1.5 times the circulation of the shear-layer vortices which interact with the vortex rings. A three-
dimensional simulation on the interaction between avortex ring and arectilinear vortex tube suggests that the critical
value of the vortex ring is approximately 1.5 timesthat of the vortex tube.

Loss of power by the drag acting on the aerofoil is the drag multiplied by the main-flow velocity. The drag is
reduced by the impinging vortex rings; this reduction corresponds to the reduction in loss of power DW. An
efficiency of the control can be evaluated by h = DWW, where W, is the power required to generate the vortex
rings. The efficiency attains a broad maximum at Fc/U » 4.0 for a fixed value of G, which is the fundamental
frequency of the shedding-type or impinging-type instability. This implies that the steady round jet , which
corresponds to Fc/U = ¥, is not the best choice for the separation control in terms of the efficiency. Moreover, the
efficiency attains amaximum at a particular value of circulation G/(Uc) » 0.32. Thisvalue is approximately the same

10



asthat beyond which the momentum defect becomes independent of the circulation.

7. CONCLUDING REMARKS

Challenging issues on separated flows have been discussed for several prototype flows. Flow structure in the
prototype flows have been studied for many years by experiments and, especially in recent years, numerical
simulations. Particle-image velocimetry yields three-dimensional fields of velocity and vorticity vectors almost the
same extent as direct numerical simulations. These are experimental results, whose acquisition and processing have
been made efficient and economical by the advent of computers and laser-applied technology. What is lacking is a
physical model which can predict essential properties of the separated flows, especially the base pressure. Thisis
because the base pressure, for example, is determined by the overall dynamics of the near wake flows. It may be
emphasized that we have no theories to predict the drag coefficient of such a simple shape as a circular cylinder or a
sphere as a function of Reynolds number in the range of the vortex shedding. Such a theory, if it had been
constructed, will lead to new understanding of separated flows and to a new way of looking at them. The mechanism
of low-frequency modulation of vortex shedding is not resolved yet.

In order to understand those separated flows encountered in engineering applications which have multiple
parameters, we need to add other parameters to the prototype separated flows. An elliptic disk is an example of such
an extension of acircular disk to study effects of another length scale on the wake. The additional parameters, if they
are properly chosen, may yield novel features which will enhance researchesin the future.

Control of flow to suppress the large-scal e separation or to reduce the separation zone has wide potential applications
in fluids engineering because the control reduces the drag, flow unsteadiness and aerodynamic sound. Passive
control is not effective once large-scale separation has occurred, this being the reason why active control is required.
One of challenging issues in the active control of large-scale separation is a large energy to be supplied to the
actuators. Large-scale separation in turbomachinery and air-crafts comes into problem in unusual and emergent
situations, so that a high energy for control may be permissible although it is not undesirable. Whether there exists a
precursor of large-scale separation is still an open question.
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